
SOFTWARE ENGINEERING ENVIRONMENT FOR BUSINESS
INFORMATION SYSTEMS

Alar Raabe
Profit Software AS, Türi 9, 11314 Tallinn, Estonia

Email: alar.raabe@profitsoftware.ee

Keywords: Model driven synthesis, meta-model extensions, software engineering, software engineering environment

Abstract: There is a growing need to reduce the cycle of business information systems development and make it
independent of underlying technologies. Model driven synthesis of software offers solutions to these
problems. This article describes a set of tools and methods applicable for synthesizing business software
from technology independent models. This method and these tools are distinguished by the use of extended
meta-models which embody knowledge of the problem domain and target software architecture of the
synthesized software system by the use of the model conversion rules described using the combined meta-
model and by the use of reference models of problem domains and sub-domains, which are combined and
extended during the construction of software system descriptions. The difference of our method from other
domain specific methods is the separate step of solution domain analysis and the use of meta-model
extensions. This study has been done in the context of developing product-line architecture for insurance
applications.

1 INTRODUCTION

Today’s business processes have become more
dependent on the software, and at the same time are
changing very rapidly in response to the market
changes. It is characteristic of business information
systems that initial results from software
development should be delivered with a very short
delay, and when the business volume grows or the
business processes change, the system must be able
to grow along, without impeding the business
process (e.g. without major reimplementation
effort). Usually to achieve different qualities of
service (e.g. scalability, reliability, security, etc.)
required for business information systems different
implementation technologies have to be used, or
several different implementation technologies have
to be combined.

At the same time implementation technologies of
software systems are also developing at fast pace,
often without offering backward compatibility. To
avoid becoming tied to a legacy software, which
requires expensive measures to maintain and to take
advantage of the most recent developments in the
implementation technologies and base software (e.g.

application servers, operating systems, etc.),
business information systems should be
reimplementable quickly, using a different
implementation technology.

In addition, because of this fast change in the
implementation technologies and the need for
change of underlying implementation during the life
cycle of business information system, the main body
of reusable software assets of an enterprise should
be independent of specific implementation
technologies.

These problems are addressed by the model-
based approaches to the software development (e.g.
model-based software synthesis (Abbott et al.,
1993), model-based development (Mellor, 1995),
model driven architecture (MDA) (OMG, 2001a),
etc.), where the main artifact of software
development is implementation technology
independent model of a required software system,
which becomes the source of concrete
implementation created through synthesis or
generation.

When convergent engineering principles of
software design (Taylor, 1995) are applied, then
analysis and design will produce artifacts that are
easily mapped into the implementation constructs,
making the automatic generation of implementation
easier. This will be possible if the analysis and

 2

design models are based on a meta-model, which is
rich enough to capture details needed to synthesize
implementation (Melnikov, 1990).

We treat the development of the business
information systems similar to the domain oriented
application development technologies (SEI and
Honeywell), where business in general is treated as a
large general domain containing several more
specific domains (business areas), which refer to the
common elements from the general business
domain.

This article describes a set of tools and methods
applicable for synthesizing business information
software from technology independent models.
These tools are distinguished by the usage of
extended meta-models (Raabe, 2002), which
embody knowledge of problem domain and target
software architecture, by the usage of model
conversion rules described using the combined
meta-model, and by the usage of reference models of
problem domains, which are extended during the
construction of descriptions of the software system.

The problems analyzed in this article are:
• creation and usage of reference models

during the development process;
• composition of reference models;
• steps of software process for model-based

software development;
• parts of software engineering environment

(SEE) targeted to usage of models.
This article covers the studies done in the

context of developing a product-line architecture
(Parnas, 1976 and Bass, Clements & Kazmann,
1998) for a family of insurance applications that
applies principles of convergent engineering
(Taylor, 1995) and the model driven approach
(Abbott et al., 1993 and Mellor, 1995) to the
insurance software production, developed under the
guidance of the author.

Because insurance as an example of the problem
domain is sufficiently complex, we assume that the
techniques working in this domain would be
applicable to other domains as well.

2 USAGE OF MODELS IN
SOFTWARE ENGINEERING

Next we review the usage of models in the
traditional methods of producing business
information systems.

2.1 Definitions

We will use the following definitions from UML:

• domain is an area of knowledge or activity
characterized by a set of concepts and
terminology understood by practitioners in
that area (OMG, 2001b);

• model is a more or less complete abstraction
of a system from a particular viewpoint
(Rumbaugh, Jacobson & Booch, 1999), or
model is an abstraction of a physical system
with a certain purpose (OMG, 2001b).

We assume that domains may themselves
contain more specific sub-domains, i.e. between
domains can exist a generalization relationship
(Simos et al., 1996). Based on this generalization
relationship, domains form a taxonomic hierarchy.

We extend the meaning of the model to represent
not only abstractions of physical systems, but also
abstractions of logical systems.

Additionally, we introduce the following
definitions:

• domain model is a body of knowledge in a
given domain represented in a given
modeling language (e.g. UML);

• problem domain of a software system is a
domain which is the context for functional
requirements of that software system;

• solution domain of a software system is a
domain which describes the implementation
technology of that software system;

• reference model is a representation of
knowledge about the problem domain
combined with the standard solutions for
standard problems in that domain;

• analysis model is a model of a software
system which contains elements from the
relevant problem domain models and is
essentially a combination and specialization
of relevant problem domains for specific
needs of a given software system specified by
the set of functional requirements for the
system;

• implementation model is a model of specific
implementation of some software system
which contains elements from the relevant
solution domain models and is essentially a
combination and specialization of relevant
solution domains for specific needs of a given
software system specified by the set of non-
functional requirements for the system;

• combination of models is an operation which
makes the elements of combined models
available to the resultant model (e.g. in UML
composition of models, importing of models,
and inheritance of models (OMG, 2001 and
Rumbaugh, Jacobson & Booch, 1999)).

Both the problem domain and the solution
domain of a software system may contain several
more specific sub-domains (Simos et al., 1996).

 3

Problem domain is constructed according to the set
of functional requirements to the software system,
and solution domain is constructed according to the
set of non-functional requirements to the software
system.

We use the term implementation model instead
of the design model to stress that this model
represents not only the logical level of design, but
the design of the software system for the specific
combination of solution domains – a specific
implementation.

We are interested that reusing the reference
models during the analysis and design phase of
software development will result in reusing the
implementation of the same reference model during
the implementation phase.

Similarly, we are interested in reusing the
analysis model of a software system when non-
functional requirements, and accordingly the
implementation model, change.

2.2 Usage of models in the traditional
software development process

A traditional software development process uses
a generic meta-model, and both the system and its
implementation are modeled using the same meta-
model. The relationships between the generic meta-
model and the models created in the traditional
software development process are shown in Fig. 1.

«metamodel»

Generic Analysis
(UML) Meta-Model

«instanceOf»

Analysis Model
(Specific Model)

Implementation Model
(Concrete Software)

«instanceOf»

«transformation»

Expert knowledge

Meta Level

Figure 1: Traditional usage of meta-models and models

The problem with this approach is that the

analysis model contains implicitly parts of the
domain models of all the domains, which the given
software system concerns (e.g. analysis model for
insurance policy management and claim handling
system for life insurance agency contains parts from
the life insurance domain, parts from the claim
handling domain and might contain also parts from
the accounting and money management domains).
Similarly, the implementation model of a specific
software system contains parts from architecture
models inherent to the chosen implementation

technology.
Because problem domain model elements in the

traditional analysis model, which are not specific to
the given system, are intermixed with the model
elements specific to the given system (e.g. describe
the specific business situation and business
processes), domain modeling effort made in the
context of one software system is very hard to reuse
for other software systems in the same domain, or
when the given system must be changed because of
the changes in the business domain.

Because the transformation from the analysis
model to the implementation model is an informal
one-way transformation, which produces the
implementation model where the analysis model
elements are intermixed with the elements of the
solution domain, the results of the analysis effort are
difficult to reuse when the given system must be
changed or reimplemented, using different
implementation technologies because of the changes
in the non-functional requirements.

2.3 Software development process
with extended meta-models

As described in (Raabe, 2002), one way to make
the analysis and design processes more effective and
guide the analysis in a specific domain, we propose
using the extended analysis meta-models, which
embody the domain knowledge and reference
models, which are the results of partial analysis of a
given problem domain, as a starting point for the
analysis and design processes.

«transformation»

«metamodel»

Generic Analysis
(UML) Meta-Model

«metamodel»

Architectural Style

Extended Analysis
Meta-Model

Specialised
Architectural Style

Problem Domain Model
(Reference Model)

«instanceOf»

Analysis Model
(Specific Model)

Solution Domain

(Generic Software)

Implementation Model
(Concrete Software)

«instanceOf»

«rules»
Specialised

Rules

«metamodel»

«metamodel»

«transformation»

«rules»

Rules

«rules»

Meta-Rules

«instanceOf»

«transformation»

Meta Level

Model

Figure 2: Proposed usage of extended meta-models and

reference models

This enables us to define precise transformation

 4

rules between several levels of models (Peltier,
Ziserman & Bézivin, 2000 and Lemesle, 1998)
usable in the software development process for
synthesizing the implementation model from the
analysis model.

The relationships between the different models
and the transformation rules are shown in Fig. 2.

When we have separated the analysis model of
traditional methods into the analysis model of a
given software system and a set of problem domain
models, and similarly, the implementation model
into the implementation model of a given software
system and a set of solution domain models, it will
be possible to reuse the analysis efforts when
reimplementation of a given software system is
required.

M
1

«instanceOf»

M
2

«instanceOf»
R

12

«rules»

«instanceOf»

transformation

MM 1

«metamodel»

MM 12

«metamodel»

MM 2

«metamodel»

Figure 3: Need for combined meta-models for model
transformations

As shown in Fig. 3, to describe transformations

between different models, which possibly use
different meta-model extensions, we need to
combine source and target meta-models and their
extensions to represent the transformation rules,
which need to access concepts from both meta-
models.

A set of operations for combining of meta-model
extensions is described in (Raabe, 2002). There we
propose to extend semantics of UML with the model
combination operations and describe techniques to
achieve interoperability of meta-model extensions,
and to allow isolation of the developed model from
the changes in the meta-model.

3 REFERENCE MODELS

A reference model is a representation of knowledge
about the problem domain, which are results of
partial analysis of a given domain combined with the
standard solutions for standard problems in that
domain.

To make the analysis process more effective and
guide the analysis in a specific domain, we have to
provide reference models as a starting point for the
analysis and design processes, by giving a set of
ready-made design decisions applicable to the given
problem domain.

As a result of nested problem domains there will
be a need to create specialization hierarchies of
reference models.

3.1 Creation of reference models

There are some considerations that have to be taken
into account when reference models are created.
These considerations are meant to facilitate reusing
and combining the reference models.

The first one concerns the usage of classes of
roles instead of classes of objects. A role is a
context -specific view of an object (see role object
design pattern in (Bäumer, 2000)). A role class is an
element of a model which represents the classifier in
some other model. Role classes are similar to the
connection mechanism called “roles” used in UML
to connect classifiers to the collaborations.

The second consideration is to clearly mark the
extension or variability points in the model.

The third one concerns the isolation of the
possible variable functionality or behavior by
reification, for example, using factory and strategy
patterns.

The last one is the clear clustering of model
elements. When selectively reusing model elements
from the reference models it is not possible to select
arbitrary model elements, but reuse has to happen by
the clusters of model elements.

3.2 Role-based modeling

To describe the difference between role clasess and
object classes, let us see the example (Fig. 4), where
we model the classification of persons to customers
and beneficiaries.

When using the static disjoint classification,
objects cannot change their classes during their
lifetime and each object can only belong to one
class. If we try to represent situation where same
person can be a customer and a beneficiary at the
same time, we will need an additional identity
mechanism, which has to connect instances of these
classes together.

When using the role classes, there is a possibility
that several roles will represent the same object at
the same time. This set of roles can change during an
object’s lifetime.

Role classes represent the multiple dynamic
classification (Rumbaugh, Jacobson & Booch, 1999)

 5

of objects, where objects may acquire and loose
classes during run-time.

«role» «role»

«roleOf»«roleOf»

Person

BeneficiaryCustomer

Person

BeneficiaryCustomer

: Customer : Beneficiary : Customer : Beneficiary

A : Customer A : Beneficiary A : Customer A : Beneficiary

Migration not allowed Migration allowed

Different identities Same identity

Figure 4: Difference of role classes from object classes

To facilitate cascading combinations of models,

role classes may represent other role classes, as
shown in Fig. 5.

«role»«role»

Model A

Model B

Model C

«roleOf»

«roleOf»

«roleOf»

A in A

A in C

B in A

B in C

B in B
«role»

Figure 5: Usage of role classes to support reuse

When role-based modeling is used for reference

models, it is possible to (re)use the reference model
by associating the model classifiers with the role
classes of reference models.

3.3 Combination of reference models

Assuming that the used models are represented as
UML models, we can use containment, importing, or
multiple inheritance of models, to achieve model
combination (OMG, 2001) as shown in Fig. 6.

When using model containment to combine
different reference models, combined model
elements are encapsulated and not visible to the
combining model or each other. To be able to “see”
those elements in the combining model, they have to
be either imported or the combining model should
be a specialization of all the combined models.
Therefore containment is not in practice suitable for
combining the reference models.

Domain A

Domain B Domain C

Domain D

Model of A

Model of B Model of C

Model of D

Model of A

Model of B Model of C

Model of D

Model of A

Model of B Model of C

Model of D

Possible name
conflicts

«imports» «imports»

«imports» «imports»

Containment
in multiple models
not allowed

Name conflicts
can be resolved

by Inheritance

by importing

by containment

only one-by-one

Figure 6: Model combination techniques in UML

When using model importing for combining

different reference models, the dependency with the
stereotype «imports» in the UML describes access
permission, i.e. that an importing model imports all
the elements with sufficient visibility from the
supplier models, including elements of models
imported by the supplier models that are given
public visibility in the supplier. Because it is not
possible to build model hierarchies with importing,
it has only limited value as a mechanism for
combining the reference models.

When using multiple inheritance of models to
combine different reference models, it is possible to
construct taxonomic hierarchies of models, because
a model can have generalizations to other models.
The mechanism of constructing the description of a
specific model out of more general models is
inheritance, i.e., the public and protected elements
owned or imported by more general models are also
available to its children – more specific models, and
they can be used similarly to any element owned or
imported by the child models themselves.

Elements inherited from other models due to
generalization retain their name and extend the
namespace of the inheriting model. By default,
inherited elements have the same visibility both in
the child model and in the parent models. It is not
possible to change the name or visibility of inherited
elements in the inheriting model.

Problems of combining models in UML are as
follows:

• name conflicts between elements from
different models;

• conflicting model elements (conflicting
features, relationships and constraints);

 6

• cluttered resultant model (because all of the
combination methods in UML are only
additive);

• difficulty in changing the used meta-model
extensions of the model.

4 SOFTWARE PROCESS STEPS

We propose that software development process for
problem-oriented software will use both meta-model
extensions and reference models and contains the
following steps:

1. Problem domain analysis, which produces
meta-model extension(s) specific to a given
problem domain and a set of reference
models, defined in terms of these meta-model
extensions. The results of the problem
domain analysis are reusable for all the
systems which share the same problem
domain.

2. Solution domain analysis, which produces
meta-model extension(s) specific to a given
solution domain and an architecture model
(architectural style) defined in terms of these
meta-model extensions. The results of the
solution domain analysis are reusable for all
the systems which share the same solution
domain.

3. Generic solution design, which produces
models of generic solutions for a given
solution domain. The results of the generic
solution design are reusable for all the
systems which share the same solution
domain.

4. Implementation of architecture, which
produces specific software artifacts needed to
implement the designed generic solutions in a
given solution domain.

5. Problem to solution mapping design, which
produces transformation rules for problem
domain models to solution domain models
transformation on different model levels. The
results of problem to solution mapping design
are reusable for all the systems which share
both the problem and solution domain.

6. Specific problem analysis, which uses
products of problem domain analysis (meta-
model extensions and reference models) and
produces the model of a given software
system.

7. Synthesis of a specific system, which uses
transformation rules developed during
problem to solution mapping design, the
chosen implementation of architecture and
produces specific implementation of a

system.
The software process with the process steps

relationships to the used and produced models is
shown in Fig. 7.

Steps 1-5 are independent of the specific
software system and the investments needed to
perform these steps can be spread over the product
line or a family of systems (Parnas, 1976 and Bass,
Clements & Kazman, 1998), which share the same
problem domain and solution domain.

The difference between our approach and
domain modeling approaches presented in (SEI and
Honeywell) is that we propose to separate the
problem domain analysis and solution domain
analysis, and require that the analysis result of both
domains will be presented as meta-model
extensions. We also prescribe a separate design step,
where transformation rules from the problem
domain to the solution domain on several model
levels will be produced.

These reference models must be specialized to
create concrete analysis and design models for a
given problem. As a result of nested problem
domains and need for interoperability between the
specific reference models there will be a need to
create specialization hierarchies of reference models.
To be able to further specialize the model, certain
aspects exist during the model construction that have
to be taken into account: modeling should be based
on the roles (or aspects) of business objects, and
variable parts of the model should be isolated.

Catalysis methodology (D’Souza & Wills, 1999)
describes a specialization of models which is purely
additive. Our experience shows that when trying to
compose specific reference models to produce a
model of a required system, the additive model
specialization is not enough. It tends to produce
models that contain unnecessary elements. To avoid
this, we propose to use techniques applicable during
the specialization of the model, like overriding the
model elements and removing unused elements
(Raabe, 2002).

5 PARTS OF SOFTWARE
ENGINEERING ENVIRONMENT

Software engineering environment that supports the
described technology of software engineering
consists of the following parts:

• repository of models which implement meta-
model extensions and model combination
operations;

• tools for manipulating the models and
extended meta-models;

 7

Problem Domain

Specific Problem System Model

Solution Domain

Architecture Style
«metamodel»

Problem Domain
«metamodel»

Metamodel

«instanceOf»

Solution Domain
Analysis

Problem Domain
Analysis

Specific Problem
Analysis

Transformation
«metamodel»

Domain Metamodel
Problem to Solution
Mapping Design

Synthesis Rules

«instanceOf»

«subset»

Architecture Model

«instanceOf»

Generic Solution
Design

Synthesis of
Specific System

Implementation
of Architecture

«instanceOf»

Architecture
Components

Specific System
Implementation

«uses»

Reference Model

Figure 7: Model-oriented software development.

• reference models of the needed problem

domains;
• changeable implementations of base

architectures that correspond to different
implementation technologies and embody
generic implementations of reference models
stored into the repository;

• rule-driven generators which implement the
model transformations.

6 PRACTICAL APPLICATION

A practical application of the presented techniques
and tools for software engineering was developed
under the guidance of the author at the Progressive
Financial Technologies Ltd. during 1995-2000 to
develop insurance software sold under the registered
trademark Once&Done®.

Once&Done® software forms a product-line
architecture (Parnas, 1976 and Bass, Clements &
Kazman, 1998) of insurance applications based on
the convergent engineering principles (Taylor,
1995). All members of Once&Done® product-line
are based on a set of reference models of insurance
business, and on the common object-oriented
architecture.

Software environment for producing
Once&Done® product-line members consists of the
following:

• Models consisting of the insurance specific
extension of the meta-model of the traditional
object-oriented analysis and reference models
of the insurance domain organized according
to the main elements of the insurance domain
(like party, policy, insurable, coverage,
property and casualty insurance, life
insurance, etc.).

• Object-oriented framework consisting of
elements which implement technical (base)
services for building object-oriented business
software – an environment for business
objects and generic implementation of
insurance domain models and the related
insurance functionality.

• Process containing the description of steps
and tasks required to create a member of the
product-line, and based on the object-oriented
paradigm. The goal is to support the creation
of the insurance software based on the
Once&Done® product-line architecture,
maintaining the quality and predictability,
identification of reusable elements and the
accountability (visibility) of the process.

• Tools containing facilities for using the
framework and models according to the
process to produce members of the product-
line. A central tool is the Once&Done®
Specification Environment (OD-SE), which
implements the extended analysis and design
meta-model. Additionally, various generators

 8

permit us to generate concrete
implementations of business objects based on
the information in the OD-SE repository.
OD-SE allows us to connect several OD-SE
repositories, enabling one to create members
of the product-line by combining multiple
existing models.

Because the whole development cycle of
software is based on the same model (according to
convergent engineering principles (Taylor, 1995)):

• software engineering process is simplified
and the total amount of work is reduced;

• gaps between business processes and their
supporting software are minimized;

• modifications to the business processes and
the supporting software are easily
coordinated.

An analyst and a designer create a model of a
software system, using the provided reference
models. As compared to the traditional universal
modeling methods, where an analysis usually starts
at a blank page, this makes the analysis and design
processes easier and shorter. When using the model
inheritance to combine the needed reference models
into the model of the required system, we assure that
all the changes of reference models are inherited to
the model of the software system, making it easy to
keep all the systems based on the same reference
models consistent.

Insurance products that can be composed of
elementary parts to cover certain risks involve
complex business rules and compose a large domain,
which must be separately modeled before the
systems supporting these products can be built. A
combination of meta-model extensions suitable to
describe insurance business processes and insurance
products in Once&Done® allows a description of
business processes and insurance products as an
integral part of insurance systems model. When
compared to the traditional universal modeling
methods, this reduces the number of models that
must be constructed, makes models smaller, and
makes the transformation from the analysis models
to design models easier.

Changing the meta-model extensions that
describe implementation architecture allows the
generation of different implementations of the
insurance system out of the same model. This has
been tested by changing the implementation
architecture of the same insurance system from
client-server architecture with a fat client to a three-
tier server centric architecture with a thin client,
without changes to the insurance system model.

7 RELATED WORK

Domain engineering in (SEI) separates the software
engineering process into two larger parts: domain
engineering and application engineering.

The difference of our method is that we clearly
separate the step of architecture engineering, which
consists of solution domain analysis and
implementation of architecture, from the domain
engineering, which should be performed before the
application engineering. The results of this step are
the corresponding extensions of meta-model, which
allow to describe transformation rules for
transforming the application model into
implementation with the given architecture style,
and the architecture framework.

Similar problems of model combination are dealt
with in the Generic Modeling Environment (GME
2000) (Ledeczi, Volgyesi & Karsai, 2001 and
Ledeczi et al., 2001). GME 2000 uses three
additional model operators to support the model
composition: equivalence of classes, interface
inheritance and implementation inheritance of
models. The equivalence operator constructs a union
of two different classes. The proposed new model
inheritance operators define the fixed selection
criteria for model elements, which are taken from
the source model by one of these operators. Interface
inheritance takes all the associations and
compositions, where the source model element is in
the role “contained”. Implementation inheritance
takes all the attributes and compositions, where
source model element is in the role of “container”.

Our experience shows that in real world
applications it is necessary to allow more complex
selection criteria for model elements, which are
inherited from the base models.

Lately the MDA initiative from OMG (OMG,
2001a) has been establishing modeling standards
needed to develop supporting tools for platform
independent application description.

Techniques and tools presented in the article are
in line with MDA and useful when the MDA
approach is applied to the development of large-
scale business systems.

8 CONCLUSIONS

We have shown that for supporting the model driven
synthesis of software, there exists a need for
combining models and meta-models. In the case of
model inheritance used for combining the models,
operations of overriding, replacing and deferring of
inherited elements are needed.

We have also shown that usual analysis and

 9

design techniques do not produce the reference
models that are suitable for the model combination.
We have proposed a modeling technique that uses
role-based modeling, clear identification of variation
points (through the usage of feature analysis),
separation of functionality and explicit clustering of
model elements, to produce reference models which
are easily used during the modeling of specific
software systems.

Finally, we have introduced new steps in the
software process – solution domain analysis and
problem to solution mapping design. In addition, we
require that the results of the problem and solution
domain analysis be presented as meta-model
extensions.

9 ACKNOWLEDGEMENTS

Author wishes to acknowledge gratefully Profit
Software Ltd. (Finland) and the Estonian Science
Foundation for their support (Grant 4721).

Author wishes to thank late Boris Tamm for
discussions on the subject and many useful
suggestions for improving this paper.

10 REFERENCES

Abbott, B., Bapty, T., Biegl, C., Karsai, G., Sztipanovits,
J., 1993. Model-Based Software Synthesis, IEEE
Software, May, 10 (3), 1993, pp.42-52.

Mellor, S. J., 1995. Reuse through automation: Model-
Based Development, Object Magazine, September
1995.

OMG, 2001a, Model Driven Architecture, OMG 01-07-01,
ftp.omg.org/pub/docs/ormsc

Taylor, D. A., 1995, Business Engineering with Object
Technology, John Wiley & Sons, New York.

Melnikov, I., Raabe, A., 1990, Expert System Based
Computer Aided Software Engineering (CASE)
Environment. In Proceedings of 5. Symposium
“Grundlagen und Anwendungen der Informatik” 6.-8.
Februar 1990, Wissenschaftliche Tagungen der
Technischen Universität Karl-Marx-Stadt 6/1990,
pp.180-188.

SEI, Domain Engineering: A Model-Based Approach,
www.sei.cmu.edu/domain-engineering

Honeywell, Domain-Specific Software Architectures,
www.htc.Honeywell.com/projects/dssa

Raabe, A., 2002, Techniques of combination of
metamodel extensions, Proceedings of the Estonian
Academy of Sciences, Engineering, 8 (1), 2002, pp. 3-
17.

Parnas, D., 1976, On the Design and Development of

Program Families. IEEE TSE, 2 (1), 1976, pp.1-9.
Bass, L., Clements, P. and Kazman, R., 1998, Software

Architecture in Practice, Addison-Wesley.
OMG, 2001b, OMG Unified Modeling Language

Specification Version 1.4, OMG 01-09-67,
ftp.omg.org/pub/docs/formal

Rumbaugh, J., Jacobson, I., and Booch, G., 1999, The
Unified Modeling Language Reference Manual,
Addison-Wesley, Reading, Massachusetts.

Simos, M., Creps, D., Klinger, C., Levine, L., and
Allemang, D., 1996, Organization Domain Modeling
(ODM) Guidebook, Version 2.0, Technical Report for
STARS, STARS-VC-A025/001/00, June 14, 1996.

Peltier, M., Ziserman, F., Bézivin, J., 2000, On Levels of
Model Transformation, In XML Europe Conference,
Paris France, June 2000,
www.gca.org/papers/xmleurope2000.

Lemesle, R., 1998, Transformation Rules Based on Meta-
Modeling, In Proc. of EDOC'98, 3-5 November 1998,
La Jolla, California, USA, 1998, pp. 113-122.

D'Souza, D. F., Wills, A. C., 1999, Objects, Components,
and Frameworks with UML, The Catalysis Approach,
Addison-Wesley, Reading, Massachusetts.

Bäumer, D., Riehle, D., Siberski, W. and Wulf, M., Role
Object, In Pattern Languages of Program Design 4,
Addison-Wesley, Reading, Massachusetts, 2000,
pp. 15-32.

Kendall, E. A., Role Model Designs and Implementations
with Aspect Oriented Programming, In Proceedings of
the 1999 Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’99), ACM Press, November 1999.

Ledeczi, A., Volgyesi, P., Karsai, G., 2001, Metamodel
Composition in the Generic Modeling Environment, In
European Conference on Object-Oriented
Programming (ECOOP'2001). Workshop on Adaptive
Object-Models and Metamodeling Techniques,
Budapest (Hungary), June 2001,
adaptiveobjectmodel.com/ECOOP2001/submissions

Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P., and
Maroti, M., 2001, On Metamodel Composition”, In
IEEE CCA 2001, Mexico City, Mexico, September 5,
2001, www.isis.vanderbilt.edu/publications/archive

