
Model-Driven Development

Model-Driven Methods in
Software Engineering

Alar Raabe

3.10.11 Copyright © Alar Raabe 20112

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Model-Driven Development Methods
• Generative Programming
• Domain Specific Languages

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

3.10.11 Copyright © Alar Raabe 20113

Alar Raabe

• Over 30 years in IT
– held various roles from programmer to a software architect

• 15 years in insurance and last 4 years in banking domain
– developed model-driven technology for insurance applications

product-line
• models
• method/process
• tools and platform framework

– developing/implmenting business architecture methods for a
banking group

• Interests
– software engineering (tools and technologies)
– software architectures
– model-driven software development
– industry reference models (e.g. IBM IAA, IFW)
– domain specific languages

3.10.11 Copyright © Alar Raabe 20114

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Model-Driven Development Methods
• Generative Programming
• Domain Specific Languages

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

3.10.11 Copyright © Alar Raabe 20115

Common Language – some Definitions
1

• Abstraction
– a view of an object that focuses on the information relevant to a

particular purpose and ignores the remainder of the information
– the process of formulating a view

• Model
– an interpretation of a theory for which all the axioms of the theory

are true
– a semantically closed abstraction of a system or a complete

description of a system from a particular perspective
– anything that can be used to answer questions about system

• Marvin Minsky & Doug Ross
– a set of structured information NOT JUST A PICTURE!

• Metamodel
– a logical information model that specifies the modeling elements

used within another (or the same) modeling notation
– specification of the concepts, relationships and rules that are used

to define a methodology
– a model of models (or a language for models)

3.10.11 Copyright © Alar Raabe 20116

Common Language – Some Definitions
2

• Model Transformations
– changing the form of the model while preserving semantics and

some desirable properties (like correctness)

• Model Refinements
– changing (enlarging) the content of the model – adding details

• Domain
– a problem space
– a distinct scope, within which common characteristics are

exhibited, common rules observed, and over which a distribution
transparency is preserved

– an area of knowledge or activity characterized by a set of concepts
and terminology understood by practitioners in that area (UML)

• Domain Specific Language (DSL)
– language dedicated to a specific problem domain, problem

representation technique, and/or problem solution technique

3.10.11 Copyright © Alar Raabe 20117

How we did Business Yesterday

Customer

Business
Specialist

Agreement

Service

Reports

Service could not correspond to
what customer wanted as free form
agreement might be misunderstood
by both parties

Work is inefficient and manual – lot
of business specialists are needed
for producing service

3.10.11 Copyright © Alar Raabe 20118

How we do Business Today

Customer

Business
System

Formalized
Agreement

Service

Reports

Service corresponds better to what
customer wanted as formalized
agreement is easier to understood
by both parties

Work is efficient and can be
automated – few if any business
specialists are needed for producing
service

Agreement
Model

3.10.11 Copyright © Alar Raabe 20119

How we do Business Tomorrow

Customer

Business
System

Service

Reports

Consultant

Formalized
Agreement

If customer needs to
be educated for filling
the formalized
agreement –
consultants might be
needed

Agreement
Model

3.10.11 Copyright © Alar Raabe 201110

How we Develop Software Today

Business
Specialist

Specification

Documentation

Software
Specialist

Business
System

Business system could not
correspond to what business
specialist wanted as free form
specification might be
misunderstood by both parties

Work is inefficient and manual – lot
of software specialists are needed
for producing business systems

3.10.11 Copyright © Alar Raabe 201111

BusinessObject

attribute3
attribute2
attribute1

method1
method2
method3

Data Tier

Application Tier

Client Tier

Communication Tier

GUI Tier
Visual Components

Non-visual Components

Communication

Server Components

Components

Data Access
Components

Consistency of Implementation

Application Server Client

ViewsModel CacheModel

Service Server

Meta Data

Business Object

Dependent ObjectIndependent
Object

ReferenceValue

PROBLEM

3.10.11 Copyright © Alar Raabe 201112

Mapping to Different Implementations

Analysis

Possible Architecture Styles

Model

Filters

Pipes

PROBLEM

3.10.11 Copyright © Alar Raabe 201113

Problems → Solution

• Requirements for today's business information systems
– fast time-to-market – rapid delivery of initial results
– flexibility – effortless and cheap change during the life-cycle
– independence of business know-how from technology know-how
– minimal (acquisition and ownership) cost
– independence of technological platform

• Problem ⟶ Manual work
– communication errors (systematic defects)
– construction errors (random defects)
– insufficient scalability of development process (sourcing)
– difficult transfer of knowledge (continuity)
– low reuse of both analysis and construction results (high cost)
– long development time (low productivity)
– insufficient flexibilitty of systems (high cost of changes)

• Solution ⟶ Automation

3.10.11 Copyright © Alar Raabe 201114

If business specialist
needs to be educated
for filling the
formalized
specification – analyst
might be needed

Business system corresponds
better to what business specialist
wanted as formalized specification
is easier to understood by both
parties

Work is efficient and can be
automated – few if any software
specialists are needed for
producing business systems

How we should Develop Software

Business
Specialist

Formalized
Specification

Documentation

Software
Generator

Business
System

Software
Model

Software
Specialist

Analyst

3.10.11 Copyright © Alar Raabe 201115

Beginning (Excursion into the History)

• Programming Languages – to automate coding
– FORTRAN (1954)
– Lisp (1956)
– APT (MIT 1957)
– Algol (1958)

• Problem-Oriented Languages/Systems – to automate programming
– ICES (MIT 1961)

• COGO, STRUDL, BRIDGE, ...
– PRIZ

• Compiler Generators – generation of solution from model of problem
– Yacc/Lex (1979)

• Application Generators
– MetaTool & ... (Bell Labs 1988)
– GENOA

What has been will be again,
what has been done will be done again;
there is nothing new under the sun.

 -- Ecclesiastes 1:9

3.10.11 Copyright © Alar Raabe 201116

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Model-Driven Development Methods
• Generative Programming
• Domain Specific Languages

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

3.10.11 Copyright © Alar Raabe 201117

Using Models in Software Development

• Models as Descriptions and Illustrations (Documentation)

• Software as Model – Direct Modeling (of Domain)

• Models as Primary Artifacts (Executable Models)

Model

Model Generator

Model

Software

Software

Software

<<Describes>>
<<Uses>>

<<Implements>>

<<Creates>>

<<Uses>>

<<Creates>>

Most usual – we will not deal with
this (models as documentation)

3.10.11 Copyright © Alar Raabe 201118

Direct Modeling

• History
– Structured Programming / Structured Design [Jackson 1975]

• Convergent Engineering
– structure of business and business software should converge
– flexibility and multiple usages of same software

• Domain-Driven Design

• Examples
– Modeling Programs – programs that directly model something

• Recursive Descent Parser
– Generative Programs – programs, which are models and generate

other programs

“program structure should correspond to the structure of the problem”

3.10.11 Copyright © Alar Raabe 201119

Person

Policy

Property

• Convergent engineering – construct business software as a
model of business (organization and processes) [Taylor]

– business and the supporting software can be designed together
– changes in business are easier – greater flexibility of software
– same software can be used to:

1) run the day-to-day business, and

2) plan (do “what-if” analysis)

Convergent Engineering

Software
System

3.10.11 Copyright © Alar Raabe 201120

Domain-Driven Design

• Domain-Driven Design – a way of thinking and a set of
priorities, for accelerating software projects, which deal with
complicated domains [Evans]

– the primary focus should be on the domain and domain logic
– complex domain designs should be based on a model

• Some techniques an practices of Domain-Driven Design
• declarative design
• intention revealing interfaces (fluent interfaces)
• side-effect-free functions
• assertions (explicit constraints)
• conceptual contours (modules)
• standalone classes (low coupling)
• closure of operations (for value objects)
• bounded context (explicit context)
• context map (connecting models)
• shared kernel (common subset of models)
• anticorruption layer (interface between models)

3.10.11 Copyright © Alar Raabe 201121

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Model-Driven Development Methods
• Generative Programming
• Domain Specific Languages

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

3.10.11 Copyright © Alar Raabe 201122

History of Model-Driven Software
Development (MDSD)

• Real-time and embedded systems
– Model-Integrated Computing (MIC) and model-based software

synthesis – (Vanderbilt Univ. (ISIS), 1993; Abbott et al., 1994)
– Model-based development – (Mellor, 1995)

• Generative programming
– GenVoca – (Batory, 1992)
– Family-Oriented Abstraction, Specification, and Translation (FAST)

– (Weiss, 1996; AT&T, Lucent, 1999)

• Software system families (a.k.a. product-lines)
– Model-Based Software Engineering (MBSE) – (SEI, 1993)

• Integration and interoperability
– Model-Driven Architecture (MDA) – (OMG, 2001)

3.10.11 Copyright © Alar Raabe 201123

• Models
– Analysis and design meta-models
– Domain (reference) models

• Architecture
– Architecture style
– Domain (reference) architecture (in selected architecture style(s))

• Process
– Generation/transformation rules
– Process of application of generation rules

• Tools
– Model manipulation tools
– Generators

Four Components of MDSD

3.10.11 Copyright © Alar Raabe 201124

Traditional MDSD Approach

Analysis Model Implementation Model
(Concrete Software)

«transformation»

Problem domain

System requirements

Analyst

knowledge

Solution domain

Designer

knowledge

Transformation
Rules

Solution knowledge is not
separated from technical

knowledge !

3.10.11 Copyright © Alar Raabe 201125

Extended MDSD Approach

Analysis Model Implementation Model
(Concrete Software)

«transformation»

Problem domain

System requirements

Analysts

knowledge

Solution domain
knowledge

Transformation
Rules

Analyst
Analysis Model

Analysis Model
Problem Domain

Solution Domain

Architect

3.10.11 Copyright © Alar Raabe 201126

MDSD and DDD → Executable Model

Executable
Domain Model

User Interface Model
(WUI)

User Interface Model
(GUI/RIA)

Storage Model
(RDBMS)

External Model
(XML)

Other Domain Model

Mapping 1

Mapping 2

Mapping 4

Mapping 5

Mapping 3

Domain Model

GeneratorGenerator

3.10.11 Copyright © Alar Raabe 201127

OMG MDA

PSM

(Platform
Specific Model)

Transformation
(QVT)

PIM

(Platform
Independent

Model)

Software
Transformation

(QVT)
Additional

Information
(Marks)

Additional
Information
(Mapping)

Transformation
(QVT)

CIM

(Computation
Independent

Model)

Additional
Information

Domain Model –
Model of Problem
(Requirements)

Technology Neutral Model
of Solution (Abstract

Implementation)

Model of Solution
for Specific
Technology

PM

(Platform Model)

Patterns

Pattern
Names

Covers only part of MDSD !

3.10.11 Copyright © Alar Raabe 201128

Generative Programming

Configuration knowledge
●illegal feature combinations
●default settings
●default dependencies
●construction rules
●optimizations

Problem Space
●domain specific
concepts
●features

Generator
Reflection

Components +
System Family
Architecture

Domain Specific
Language (DSL)

Solution Space
●elementary
components
●maximum
combinability
●minimum
redundancy

[Czarnecki, Eisenecker]

3.10.11 Copyright © Alar Raabe 201129

Generative Programming Technologies

Configuration knowledge
●illegal feature combinations
●default settings
●default dependencies
●construction rules
●optimizations

Problem Space
●domain specific
concepts
●features

Generator Technologies
●simple traversal
●templates and frames
●transformation systems
●languages with meta-
programming support
●extensible programming
systems

Component Technologies
●generic components
●component models
●AOP approaches

DSL Technologies
●programming language
●extensible languages
●textual languages
●graphical languages
●interactive wizards
●any mixture of above

Solution Space
●elementary
components
●maximum
combinability
●minimum
redundancy

3.10.11 Copyright © Alar Raabe 201130

Generator Technologies

• Model traversal

• Templates and frames
– text with meta-instructions (referencing model)

• retrieval of information from domain/problem model
• conditional configuration of output

– JSP, XSL, Velocity

• Transformation systems
– operate on abstract syntax trees

• rewrite rules
• transformation procedures

– DMS, XT, QVT

• Languages with meta-programming support
– template meta-programming in C++

3.10.11 Copyright © Alar Raabe 201131

Domain Specific Languages

• Domain-Specific Languages (DSLs) – customized
languages that provide a high-level of abstraction for
specifying a problem concept in a particular domain

• Defining DSL
– concrete syntax

• specific representation of a DSL in a human-usable form
– style: declarative | imperative
– representation: textual, graphical, table, form(wizard), ...

– abstract syntax
• elements + relationships of a domain without representation

consideration

– semantics
• the meaning of the phrases and sentences that the domain expert

may express
– static semantics: typing rules, truth value
– dynamic semantics: evaluation rules, change in context
– defined: formally | informally (interpreters, generators, transformers, ...)

3.10.11 Copyright © Alar Raabe 201132

DSL Technologies

• Internal DSLs
– Built-in features of programming languages

• C++ templates
• Lisp Macros

– Extendible languages
• XML, Seed7
• Ruby, Groovy, JavaScript, ...

– Well-Designed APIs

• External DSLs
– Textual languages

– Graphical languages
• UML, MetaCASE

– Interactive wizards

WARNING:
Don't be too Clever !

3.10.11 Copyright © Alar Raabe 201133

DSL Example
1

• Ojay (JavaScript internal DSL)
...
// Define some validation rules

 form('signup')
 .requires('username') .toHaveLength({minimum: 6})
 .requires('email') .toMatch(EMAIL_FORMAT, 'must be a valid email address')
 .expects('email_conf') .toConfirm('email')
 .expects('title') .toBeOneOf(['Mr', 'Mrs', 'Miss'])
 .requires('dob', 'Birth date').toMatch(/^\d{4}\D*\d{2}\D*\d{2}$/)
 .requires('tickets') .toHaveValue({maximum: 12})
 .requires('phone')
 .requires('accept', 'Terms and conditions').toBeChecked('must be accepted');
...

3.10.11 Copyright © Alar Raabe 201134

Compiler

DSL Implementation
1

Abstract Syntax (AST)

DSL text Parse Generate Code

• Compiler-Based

Abstract
Representation

Editable, Storable
Representation

Executable
Representation

3.10.11 Copyright © Alar Raabe 201135

DSL Example
2

• Simple External DSL (yacc)

• Example

...
list: /*empty */ | list stat '\n' | list error '\n' { yyerrok; } ;
stat: expr { printf("%d\n",$1); } | LETTER '=' expr { regs[$1] = $3; } ;
expr: '(' expr ')' { $$ = $2; } |
 expr '*' expr { $$ = $1 * $3; } | expr '/' expr { $$ = $1 / $3; } |
 expr '%' expr { $$ = $1 % $3; } |
 expr '+' expr { $$ = $1 + $3; } | expr '-' expr { $$ = $1 - $3; } |
 expr '&' expr { $$ = $1 & $3; } | expr '|' expr { $$ = $1 | $3; } |
 '-' expr %prec UMINUS { $$ = -$2; } |
 LETTER { $$ = regs[$1]; } | number ;
number: DIGIT { $$ = $1; base = ($1==0) ? 8 : 10; } |
 number DIGIT { $$ = base * $1 + $2; } ;
...

...
a = 10
b = 5
a + 4 * (b - 3)
...

3.10.11 Copyright © Alar Raabe 201136

Language Workbench

DSL Implementation
2

Abstract Syntax (AST)

Form Editor

Generate Code

• Language Workbench

Abstract
Representation

Executable
Representation

Edit

Text Editor

Edit

Editable
Representations

Editable
Representations

Storable
Representation

3.10.11 Copyright © Alar Raabe 201137

DSL Example
3

• xText (oAW)

• Example

Entity :
 "entity" name=ID ("extends" superType=[Entity])?
 "{"
 (features+=Feature)*
 "}";
Feature :
 Attribute | Reference;
Attribute :
 type=ID name=ID ";";
Reference :
 "ref" (containment?"+")? type=ID name=ID ("<->" oppositeName=ID)? ";";

entity Customer {
 String name;
 String street;
 Integer age;
 Boolean isPremiumCustomer;
}

3.10.11 Copyright © Alar Raabe 201138

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Model-Driven Development Methods
• Generative Programming
• Domain Specific Languages

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

3.10.11 Copyright © Alar Raabe 201139

Model Management

• Relationships between Models
– “inheritance” – extension of models (package/model merge in UML2)
– correspondence mappings between models
– references to external models (package/model import in UML 2)

• Operations on Models
– editing models

• graphical model editors
• form-based model editors
• text-based model editors

– storing models
• repository
• source code control
• embedding into code

3.10.11 Copyright © Alar Raabe 201140

Network of Problem Domains

Financial Business
Domain

Insurance Business
Domain

Life Insurance
Domain

Property & Casualty
Insurance Domain

Domain
Banking Business

Unit-linked Life
Insurance Domain

Universal Life
Insurance Domain

Domain of Concrete
Insurance Company

. . .

. . .

Domain of Concrete
Insurance Company

Package «merge» in
UML2

Package «merge» or
«import» in UML2

3.10.11 Copyright © Alar Raabe 201141

Main Domain and Periferal Domains

Executable
Domain Model

User Interface Model
(WUI)

User Interface Model
(GUI/RIA)

Storage Model
(RDBMS)

External Model
(XML)

Other Domain Model

Mapping 1

Mapping 2

Mapping 4

Mapping 5

Mapping 3

Domain Model

Generator

3.10.11 Copyright © Alar Raabe 201142

Business SupportBusiness Services
Fu

nc
ti

on
al

it
y

U
se

r
In

te
rf

ac
e

Different Problem and Solution Domains
in a Specific System

Pr
oc

es
se

s
R

ul
es

C
al

cu
la

ti
on

s
R

ep
or

ti
ng

Pe
rs

is
te

nc
e

In
te

ra
ct

io
n

Financial Services

Banking Insurance

Customer Mgmt. Resource Mgmt.

Accounting Billing

3.10.11 Copyright © Alar Raabe 201143

Domain-Driven Design Best Practices

• Use the Domain Model as Ubiquitous Language

• Design Part of the System to Reflect Domain Model –
Avoid Divide between Analysis and Design

– Domain Model is Constrained to Support Efficient Implementation

• Express Domain Model in Code – Hands-On Modeling
– with Services, Entities, Aggregates and Value Objects

• Encapsulate Entities, Value Objects and Aggregates with Factories
and Value Objects with Aggregates

• Maintain Integrity with Aggregates (Entities act as roots of
Aggregates)

• Access Entities and Aggregates with Repositories

• Isolate Domain with Layered Architecture
– Presentation Layer
– Application Layer
– Domain Layer
– Infrastructure Layer

[Evans]

3.10.11 Copyright © Alar Raabe 201144

MDSD Best Practices
1

• Separate the Generated and Manually Created Code
– protected regions (generated code must be revision controlled)
– separate directory (e.g. src-gen)
– language mechanisms (e.g. subclassing/inheritance,

wrapping/containment, aspects, ...)

• Don't Manage Generated Code in Revision Control System
– exception when using protected regions or when generator can't

be integrated with build

• Integrate the Generator/Generation into the Build Process
– generation phase must be added before the compilation phase

• Generate Clean and Readable Code
– code is primarily meant for humans
– follow coding styles used for manually written code
– generate comments that identify generated code and describe the

used (parts of) source model
– use code formatter

[Voelter, ...]

3.10.11 Copyright © Alar Raabe 201145

MDSD Best Practices
2

• Use the Native Techniques of Target Platform for
Separating Generated and Manually Created Code

– object languages – subclassing/inheritance, wrapping/containment
– aspect languages – aspects/pointcuts (weaving)
– procedural languages – preprocessing (e.g. includes), libraries

• Use the Compiler (to Guide the Developer)
– let compiler check the constraints for manually written code (e.g.

overriding of mandatory methods)
– generate dummy code as example for manually written code

• Use Meta-Model as Ubiquitous Language
– use consistent terminology that connects generated code with

other parts of project
– verify the adequacy of DSLs through constant usage of metamodel

concepts

[Voelter, ...]

3.10.11 Copyright © Alar Raabe 201146

MDSD Best Practices
3

• Develop DSLs Incrementally
– DSLs should be developed as understanding grows
– DSLs are public interfces – should be developed and evolved like

APIs
– provide facilities for migrating old models to new metamodel (e.g.

model transformation)

• Develop Model Validation (Iteratively)
– semantics cannot be represented by metamodel alone (it describes

only static aspects of model – structure)
– constraints representing semantics should be added incrementally
– integrate model validation into build process

• Test the Generator(s) (using Reference Model)
– use reference (test) models as unit tests to test the generator
– generate unit tests for combination of generated and manually

created code

[Voelter, ...]

3.10.11 Copyright © Alar Raabe 201147

MDSD Best Practices
4

• Select Suitable Technology – Avoid too Complex Meta-
Models

– define core abstractions clearly and expandable
– models should be quickly editable and turnaround (model ⟶

generate ⟶ execute) should be quick
– avoid overly complex metamodels (like UML) or encpsulate these
– transform complex metamodels into simpler metamodels targetted

for specific domains
– formulate domain specific constraints on simpler metamodels

• Use Graphical and Textual Syntax Correctly (to Support
Modeller)

– don't overburden model with details – use implicit knowledge
– compromise between compactness and comprehensiveness

• Use Configuration by Exception
– use defaults for normal configurations (e.g. only specify the

exceptions)
– remember, that defaults become the part of interface (API)

[Voelter, ...]

3.10.11 Copyright © Alar Raabe 201148

MDSD Best Practices
5

• Teamwork Prefers Textual DSLs
– use exclusive locking for graphical models
– if possible, use both textual and graphical DSL (both

representations of same model)

• Use Model Transformations to Reduce Complexity
– divide the step between source model and code into several

transformation steps to fight complexity

• Generate towards a Comprehensive Platform – Keep
Translation Steps as Small as Possible

– develop domain specific platforms to reduce the complexity of
generators

• Many Small DSLs – Concentrate on the Task
– swiss army knife is nice as present, but specialised tools are used

for serious work
– divide et impera – models should be modular

[Voelter, ...]

3.10.11 Copyright © Alar Raabe 201149

MDSD Best Practices
6

• Don't Reverse Engineer – Model is Primary Artifact
– all changes should be done in model, and then all derived artifacts

should be regenerated

• Regenerate Frequently
– include generation into continuous build process
– frequent regeneration ensures compliance with model and

architectural constraints (embedded into generator)

[Voelter, ...]

3.10.11 Copyright © Alar Raabe 201150

Examples of MDSD

• Example of Model-Driven Development in Insurance
– Once & Done – a model-driven technology for insurance systems

product-line

• Example of Model-Driven Development in Banking
– RISLA – a DSL for credit products
– MLFi – a DSL for financial instruments and contracts

3.10.11 Copyright © Alar Raabe 201151

Overview of OD Software Process

• Beginning
• Anaysis

• Business Domain Analysis
• Modeling Domain Objects
• Modeling Insurance Products

• Design
• Refinement of Analysis Models
• Design of the Database Schema
• Design of the User Interface
• Design of the Printouts

• Implementation
• Generation of Code
• Implementation of Business Logic
• Installation of Business Objects

into the Base System

• Finalisation

Legacy Systems

Repository

Analysis

Rational Rose

Working System

Database
Code & Parameters

3.10.11 Copyright © Alar Raabe 201152

OperationButton Field

Value

Control Group

Control Link

Template

View

Feature
Presents

Relationship

Value Set

Constant

Analysis Coefficient Rating Formula

Business Process

Condition

Validation Rule

Action

Authority Category

Group

User

Calculation Rule

Business Entity

0..* 1..*0..* 1..*

Presents
Source

Target

Extends

Rating Feature

Attribute

Extended OOA/OOD Meta-Model
a DSL for Insurance

Systems

3.10.11 Copyright © Alar Raabe 201153

Example of Using Once&Done

• “Gadget Insurance”
– Gadgets consist of Widgets
– Gadgets can be insured against Fire and Theft

• Analysis model of “Gadget Insurance”

• Extending insurance domain model with “Gadget Insurance”

• “Gadget Insurance” product model

• Design model for “Gadget Insurance” policy management
system

3.10.11 Copyright © Alar Raabe 201154

Widget

Replacement

TheftCoverage

Renewal CostReplacement

FireCoverage

GadgetPolicy

GadgetGadgetCoverage

“Gadget Insurance” Analysis Model

3.10.11 Copyright © Alar Raabe 201155

Independent Dependent

Business Entity

Coverage Base

Insurable

GadgetPolicy

GadgetCoverage

Widget

TheftCoverage FireCoverage

Policy

ReplacementRisk Coverage

Covered Loss Type

Renewal Cost

Coverage Category

Gadget

“Gadget Insurance” Model as Extension
to Insurance Domain Model

3.10.11 Copyright © Alar Raabe 201156

Gadget Policy Template
: GadgetPolicy

Gadget Template
: Gadget

Gadet Coverage Template
: GadgetCoverage

Theft Coverage Template
: TheftCoverage

Replacement Template
: Replacement

“Gadget Insurance” Product Model

3.10.11 Copyright © Alar Raabe 201157

GadgetPage
<<View>>

WidgetsPage
<<View>>

ErrorPage
<<View>>

CoveragePage
<<View>>

Business Entity

InsurableNoteBook
<<View>>

Insurable

GadgetNoteBook
<<View>>

Gadget

NoteBook
<<View>>

NoteBookPage
<<View>>

WidgetPage
<<View>>

Widget WidgetNoteBook
<<View>>

“Gadget Insurance” Design Model

3.10.11 Copyright © Alar Raabe 201158

Once&Done – Results

• Reduction of development time
– standard functionality generated from model
– some parts of the model interpreted at run-time

• Quality of developed code
– generated code had hints for developers
– regeneration forced to conform to architecture

• Flexibility of resulting systems

– business people were able to maintain parameters

• Technology independence of domain knowledge
– easy transition from C/C++ client-server to

• Java-based Rich Client, furter
• HTML-based web-application

3.10.11 Copyright © Alar Raabe 201159

Comparing Model-Driven Method with
Traditional

• Effort for First Iteration – Basically CRUD Application

• Manually coded Claims application
– Volume

• Domain Model: 30 entities, 30 relationships
• Functionality: 10 use-cases (CRUD excl.)
• User Interface: 34 screens

– Effort: ~800 man-days (~50 analysis, ~550 implementation)

• Generated Claims application
– Volume

• Domain Model: 20 entities, 45 relationships
• Functionality: 15 use-cases (CRUD excl.), 20 business rules
• User Interface: 25 screens

– Effort: ~130 man-days (~80 analysis, ~2 implementation)

• Generated Claims was regenerated on different platform

3.10.11 Copyright © Alar Raabe 201160

Comparing Model-Driven Method with
Traditional

Traditional

Model-Driven

Analysis

Testing

Implementation

3.10.11 Copyright © Alar Raabe 201161

Lessons Learned

 Modeling is hard work and requires domain knowledge

 Project budget structure changes when using generation

 Generated system can be used as analysis tool

 Repository is good for concurrent work, analysis and
synthesis, model checking and transformations, but has
problems with versioning and version management

 Textual models can be versioned as code, but this is not
best for concurrent work with graphical models

 Interpreters of meta-info (heavily parametric software
components) are very difficult to debug – here
generation/compilation is better

3.10.11 Copyright © Alar Raabe 201162

RISLA – Language for Product Models

• Started 1990 – CAP, MeesPierson, ING, CWI
• Describes interest rate products

– Characterised by cash-flows

• Generates
– Database
– User Interface
– Product Logic

• Example:
– Loan

product LOAN

declaration
 contract data
 PAMOUNT : amount %% Principal Amount
 STARTDATE : date %% Starting date
 MATURDATE : date %% Maturity data
 INTRATE : int-rate %% Interest rate
 RDMLIST := [] : cashflow-list %% List of redemptions.

 information
 PAF : cashflow-list %% Principal Amount Flow
 IAF : cashflow-list %% Interest Amount Flow

 registration
 %% Register one redemption.
 RDM(AMOUNT : amount, DATE : date)

...

3.10.11 Copyright © Alar Raabe 201163

RISLA – Result

RISLA
Product Definition

Data Structures
(VSAM)

Input Screens
(CICS)

Product Management
Routines – Logic

(Cobol)

RISLA
Compiler

• Success
– Business people use – appropriate level of abstraction
– Time to market decreased from 3 months to 3 weeks
– Library of 100 components and 50 products
– Survived merger – flexibility

3.10.11 Copyright © Alar Raabe 201164

Generating Code for Financial
Instrument Agreement Valuation

MLFi Source
Code

Contract code

Process code

Contract code
other state

Register
Process code

MC
LR code

Dyn Prog
code

MonteCarlo
code

Model def..

Lattices, pde's,...Lattices, pde's,... MonteCarlo pricersMonteCarlo pricers

Syntax check,
error detection,
normalisation,...

Pretty-Print in MLFi
correct code

Contract level optimisation,
dead contract elimation,

temporal reorganisation,...

Stochastic Processes
no more other types

Translate to process
primitives + basic
factors of model

Process level optimisations
loop fusions, algebraic
process equalities,...

3.10.11 Copyright © Alar Raabe 201165

Financial Instrument Models in MLFi

• American Option

• Zero Coupon

american : (date * date * contract) -> contract
american(t1, t2, u) =

 anytime({[t1, t2]}, zero, u)

one : currency -> contract
(* if you acquire the contract (one k), then
 you acquire one unit of k. *)

scale : (observable * contract) -> contract
(* if you acquire scale(o, c), then you acquire
 c, but where all incoming and outgoing payments
 are multiplied by the value of o at acquisition
 date. *)

obs_from_float : float -> observable
(* obs_from_float k is an observable always equal to k *)

3.10.11 Copyright © Alar Raabe 201166

Contract Model in MLFi

• Custom-built Contracts
let option1 =

 let strike = cashflow(USD:2.00, 2001-12-27) in

 let option2 =

 let option3 =
 let t = 2001-12-18T15:00 in
 either
 ("--> GBP payment", cashflow(GBP:1.20, 2001-12-30))
 ("reinvest in EUR + receive cash later",
 (give(cashflow(EUR:1.00, t))) 'and' cashflow(EUR:3.20, 2001-12-29))
 t in

 either
 ("--> EUR payment", cashflow(EUR:2.20, 2001-12-28))
 ("wait for last option", option3)
 2001-12-11T15:00 in

 (either
 ("--> USD payment", cashflow(USD:1.95, 2001-12-29))
 ("wait for second option", option2)
 2001-12-04T15:00) 'and' (give (strike))

3.10.11 Copyright © Alar Raabe 201167

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Generative Programming
• Domain Specific Languages
• Model-Driven Development Methods

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

3.10.11 Copyright © Alar Raabe 201168

Conclusions

• No Round-Trips
– when you are Model-Driven, models are primary artifacts

(models are your code)

• Model is Not the Picture
– model is a collection of structured information in the form, which is

best fore given Domain (pictures should be Model-Driven)

• Keep Focus, Don't Mix Domains (fight Complexity)
– to represent information about problems/solutions in different

Domains use several Models with different Meta-Models

• Let the Models drive the Analysis & Design
– models are the ubiquitous language for stakeholders

• This is not a Religion !
– use Model-Driven Approaches only where it makes sense and

brings value

3.10.11 Copyright © Alar Raabe 201169

References

• Some books to read
– Krzysztof Czarnecki and Ulrich W. Eisenecker, Generative

Programming - Methods, Tools, and Applications, 2000
• http://www.generaative-programming.org/

– Tom Stahl, Markus Völter, Model-Driven Software Development:
Technology, Engineering, Management, 2006

• http://www.voelter.de/publications/books-mdsd-en.html
– Eric Evans, Domain-Driven Design: Tackling Complexity in the

Heart of Software, 2004
• http://domaindrivendesign.org/

• Some WWW sites to look
• http://www.omg.org/mda
• http://www.eclipse.org/modeling/emf/
• http://www.infoq.com/minibooks/domain-driven-design-quickly
• http://www.andromda.org/
• http://www.openarchitectureware.org/
• http://www.voelter.de/services/mdsd-tutorial.html
• http://www.martinfowler.com/bliki/dsl.html
• http://www.prakinf.tu-ilmenau.de/~czarn/gpsummerschool02/

http://www.generaative-programming.org/
http://www.voelter.de/publications/books-mdsd-en.html
http://domaindrivendesign.org/
http://www.omg.org/mda
http://www.eclipse.org/modeling/emf/
http://www.infoq.com/minibooks/domain-driven-design-quickly
http://www.andromda.org/
http://www.openarchitectureware.org/
http://www.voelter.de/services/mdsd-tutorial.html
http://www.martinfowler.com/bliki/dsl.html
http://www.prakinf.tu-ilmenau.de/~czarn/gpsummerschool02/

3.10.11 Copyright © Alar Raabe 201170

Thank You!

3.10.11 Copyright © Alar Raabe 201171

Questions?

3.10.11 Copyright © Alar Raabe 201172

Steps of Model-Oriented Software
Development

Problem Domain

Specific Problem System Model

Solution Domain

Architecture Style
«metamodel»

Problem Domain
«metamodel»

Metamodel

«instanceOf»

Solution Domain
Analysis

Problem Domain
Analysis

Specific Problem
Analysis

Transformation
«metamodel»

Domain Metamodel
Problem to Solution

Mapping Design

Synthesis Rules

«instanceOf»

«subset»

Architecture Model

«instanceOf»

Generic Solution
Design

Synthesis of
Specific System

Implementation
of Architecture

«instanceOf»

Architecture
Components

Specific System
Implementation

«uses»

Reference Model

3.10.11 Copyright © Alar Raabe 201173

MDSD Benefits (1)

• Reasons for MDSD
– domain experts can formally specify their knowledge
– need to provide diffierent implementations of the same model
– need to capture knowledge about the domains and their mapping
– separate functionality from implementation details
– same model is source for several targets (consistency)
– domain specific product-lines and software system families

• Benefits MDSD
– models directly represent domain knowledge – are free from

implementation artifacts (sepration of concerns)
– generation for various platforms is possible
– experts of different domains don't interfere
– domain experts are directly involved in development
– due to automation development is more efficient
– enforcement of architectural constraints/rules/patterns
– cross-cutting concerns are easily addressed by generators

3.10.11 Copyright © Alar Raabe 201174

MDSD Benefits (2)

• Benefits for Quality
– explicit, well-defined architecture is needed
– transformations capture expert knowledge
– architecture defines strict programming model for manually

developed parts
– generator doesn't produce accidental/random errors
– documentation is always up-to-date

• You are forced to
– do domain/application scoping
– do variability management
– create well-defined architecture
– understand domain and target architecture

3.10.11 Copyright © Alar Raabe 201175

MDSD Costs

• You need aditional skills
– domain analysis
– metamodeling
– generator development
– architecture

• Development process is more complex
– domain architecture development
– application development

3.10.11 Copyright © Alar Raabe 201176

Examples of 4 Layers of Models

• M
3
 – meta-metamodel

– a language for compilers – Yacc language syntax definition
(maybe in Yacc or in EBNF)

– XML definiton in EBNF

• M
2
 – metamodel

– C language syntax definition in Yacc (“.y” file)
– XSD schema definition in XSD (or in DTD)

• M
1
 – model

– program in C (“.c” file)
– schema definition in XSD (or in DTD)

• M
0
 – an instance of a model

– executable code
– XML file

3.10.11 Copyright © Alar Raabe 200977

Definitions
1

• System
– a collection of interacting components organized to accomplish a

specific function or set of functions within a specific environment
• Interface (Connection)

– a shared boundary between two functional units, defined by
various characteristics of the functions

– component that connects two or more other components for the
purpose of passing information from one to the other

• Module (Component)
– a logically separable part of a system

• Encapsulation
– isolating some parts of the system from the rest of the system
– a module has an outside that is distinct from its inside (an external

interface and an internal implementation)

3.10.11 Copyright © Alar Raabe 200978

Definitions
2

• Modularity
– the degree to which a system is composed of discrete components

such that a change to one component has minimal impact on other
components

– the extent to which a module is like a black box
• Coupling

– the manner and degree of interdependence between modules
– the strength of the relationships between modules
– a measure of how closely connected two modules are

• Cohesion
– the manner and degree to which the tasks performed by a single

module are related to one another
– a measure of the strength of association of the elements within a

module

3.10.11 Copyright © Alar Raabe 200979

Definitions
3

• Model
– an interpretation of a theory for which all the axioms of the theory

are true
– a semantically closed abstraction of a system or a complete

description of a system from a particular perspective
– anything that can be used to answer questions about system

• to an observer B, an object M
A
 is a model of an object A to the extent

that B can use M
A
 to answer questions that interest him about A

Marvin Minsky

• M is a model of A with respect to question set Q if and only if M may
be used to answer questions about A in Q within tolerance T

Doug Ross

