
Model-Driven Development

Model-Driven Methods in Software
Engineering

Alar Raabe

31.12.13 Copyright © Alar Raabe 20132

Alar Raabe

• Over 30 years in IT
– held various roles from programmer to a software architect and to

enterprise business architect

• 15 years in insurance and last 6 years in banking domain
– developed model-driven technology for insurance applications product-line

(incl. models, method/process, platform/framework and tools)
– developing/implementing business architecture framework and methods

for a banking group

• Interests
– software engineering (tools and technologies)
– software architectures
– model-driven software development
– industry reference models (e.g. IBM IAA, IFW)
– domain specific languages

31.12.13 Copyright © Alar Raabe 20133

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Model-Driven Software Development
• Generative Programming
• Domain Specific Languages

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

31.12.13 Copyright © Alar Raabe 20134

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Model-Driven Software Development
• Generative Programming
• Domain Specific Languages

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

31.12.13 Copyright © Alar Raabe 20135

Common Language – some Definitions
1

• Abstraction
– a view of an object that focuses on the information relevant to a

particular purpose and ignores the remainder of the information
– the process of formulating a view

• Model
– an interpretation of a theory for which all

the axioms of the theory are true
– a semantically closed abstraction of a system or a complete description of

a system from a particular perspective
– anything that can be used to answer questions about system

• Marvin Minsky & Doug Ross
• Meta-model

– a model of models (or a language for models)
– a logical information model that specifies the modelling elements

used within another (or the same) modeling notation
– model defining the concepts and their relations for some modelling

notation

A set of structured information
NOT JUST A PICTURE !

31.12.13 Copyright © Alar Raabe 20136

Common Language – Some Definitions
2

• Model Transformations
– changing the form of the model while preserving semantics and

some desirable properties (like correctness)

• Model Refinements
– changing (enlarging) the content of the model – adding details

• Domain
– a problem space
– a distinct scope, within which common characteristics are

exhibited, common rules observed, and over which a distribution
transparency is preserved

– an area of knowledge or activity characterized by a set of concepts
and terminology understood by practitioners in that area (UML)

• Domain Specific Language (DSL)
– language dedicated to a specific problem domain, problem

representation technique, and/or problem solution technique

31.12.13 Copyright © Alar Raabe 20137

Service could not
correspond to what
customer wanted as free
form agreement might be
misunderstood by both
parties

Work is inefficient and
manual – lot of business
specialists are needed for
producing service

How we did Business Yesterday

Customer

Business
Specialist

Agreement

Service

Reports

31.12.13 Copyright © Alar Raabe 20138

How we do Business Today/Tomorrow

Customer

Business
System

Service

Reports

Consultant

Formalized
Agreement

?

Business
Specialist

31.12.13 Copyright © Alar Raabe 20139

If customer needs to
be educated for
filling the formalized
agreement –
consultants might
be needed

Service corresponds better
to what customer wanted
as formalized agreement
is easier to understood by
both parties

Work is efficient and can
be automated – few if any
business specialists are
needed for producing
service

How we do Business Today/Tomorrow

Customer

Business
System

Service

Reports

Consultant

Formalized
Agreement

Model

Business
Specialist

31.12.13 Copyright © Alar Raabe 201310

How we Develop Software Today

Business
Specialist

Specification

Documentation

Software
Specialist

Business system could not
correspond to what
business specialist wanted
as free form specification
might be misunderstood
by both parties

Work is inefficient and
manual – lot of software
specialists are needed for
producing business
systems

Business
System

31.12.13 Copyright © Alar Raabe 201311

BusinessObject

attribute3
attribute2
attribute1

method1
method2
method3

Data Tier

Application Tier

Client Tier

Communication Tier

GUI Tier
Visual Components

Non-visual Components

Communication

Server Components

Components

Data Access
Components

Consistency of Implementation

Application Server Client

ViewsModel CacheModel

Service Server

Meta Data

Business Object

Dependent
Object

Independent
Object

ReferenceValue

PROBLEM

31.12.13 Copyright © Alar Raabe 201312

Mapping to Different Implementations

Analysis

Possible Architecture Styles

Model

Filters

Pipes

PROBLEM

31.12.13 Copyright © Alar Raabe 201313

Problems → Solution

• Requirements for today's business information systems
– fast time-to-market – rapid delivery of initial results
– flexibility – effortless and cheap change during the life-cycle
– independence of business know-how from technology know-how
– minimal (acquisition and ownership) cost
– independence of technological platform

• Problem ⟶ Manual work
– communication errors (systematic defects)
– construction errors (random defects)
– insufficient scalability of development process (sourcing)
– difficult transfer of knowledge (continuity)
– low reuse of both analysis and construction results (high cost)
– long development time (low productivity)
– insufficient flexibility of systems (high cost of changes)

• Solution ⟶ Automation

31.12.13 Copyright © Alar Raabe 201314

If business specialist
needs to be educated
for filling the
formalized
specification – analyst
might be needed

Business system
corresponds better to
what business specialist
wanted as formalized
specification is easier to
understood by both
parties

Work is efficient and can
be automated – few if any
software specialists are
needed for producing
business systems

How we should Develop Software

Business
Specialist

Formalized
Specification

Documentation

Software
Generator

Business
System

Problem
Model

Software
Specialist

Analyst

31.12.13 Copyright © Alar Raabe 201315

Beginning (Excursion into the History)

• Programming Languages – to automate coding
– FORTRAN (1954), Lisp (1956)
– APT (MIT 1957) ← First DSL!
– Algol (1958)

• Problem-Oriented Languages/Systems – to automate programming
– ICES (MIT 1961) → COGO, STRUDL, BRIDGE, ...
– PRIZ (ETA KübI)

• Compiler Generators – generation of solution from model of problem
– Yacc/Lex (1979)

• Application Generators
– MetaTool & GENII/GENOA & ... (Bell Labs 1980s)

• CASE (Computer-Aided Software Engineering) Tools
– GraphiText, DesignAid (Nastec 1982)

What has been will be again,
what has been done will be done again;
there is nothing new under the sun.

 -- Ecclesiastes 1:9

31.12.13 Copyright © Alar Raabe 201316

Using Models in Software Development

• Models as Descriptions and Illustrations (Documentation)

• Software as Model – Direct Modeling (of Domain)

• Models as Primary Artifacts (Models as Software)

Model

Model Generator

Model

Software

Software

Software

<<Describes>>
<<Uses>>

<<Implements>>

<<Creates>>

<<Uses>>

<<Creates>>

Most usual – we will not deal with this

31.12.13 Copyright © Alar Raabe 201317

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Model-Driven Software Development
• Generative Programming
• Domain Specific Languages

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

31.12.13 Copyright © Alar Raabe 201318

Person

Policy

Property

• Structured Programming / Structured Design [Jackson 1975]
– program structure should correspond to the structure of the problem

• Convergent engineering – construct business software as a model of
business (organization and processes) [Taylor]
– business and the supporting software can be designed together
– changes in business are easier – greater flexibility of software
– same software can be used to:

1) run the day-to-day business,

2) do it in many different ways, and

3) plan/forecast (do “what-if” analysis)

Convergent Engineering

Software System is
modelled according to

relevant reality

Structure of business and
software should converge

31.12.13 Copyright © Alar Raabe 201319

Domain-Driven Design

• Domain-Driven Design – a way of thinking and a set of priorities, for
accelerating software projects, which deal with complicated domains
[Evans]

– the primary focus should be on the domain and domain logic
– complex domain designs should be based on a model

• Some techniques and practices of Domain-Driven Design
– Declarative design (executable specification)
– Conceptual contours (modules)
– Distillation (separation of essential)

Designing by building a
domain model

Executable
Domain Model

Storage Model
(RDBMS)

External Model
(XML)

Other Domain ModelsOther Domain Models

User Interface
Models (WUI/GUI/RIA)?

?

?

?

31.12.13 Copyright © Alar Raabe 201320

Domain-Driven Design

• Domain-Driven Design – a way of thinking and a set of priorities, for
accelerating software projects, which deal with complicated domains
[Evans]

– the primary focus should be on the domain and domain logic
– complex domain designs should be based on a model

• Some techniques and practices of Domain-Driven Design
– Declarative design (executable specification)
– Conceptual contours (modules)
– Distillation (separation of essential)

Designing by building a
domain model

Executable
Domain Model

Storage Model
(RDBMS)

External Model
(XML)

Other Domain ModelsOther Domain Models

User Interface
Models (WUI/GUI/RIA)

31.12.13 Copyright © Alar Raabe 201321

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Model-Driven Software Development
• Generative Programming
• Domain Specific Languages

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

31.12.13 Copyright © Alar Raabe 201322

Models as Primary Artifacts

• History
– Shlaer-Mellor method → models with precise semantics

• Main Techniques
– Model-Driven Software Development (MDSD)
– Generative Programming
– Domain Specific Languages (external & internal)

• Examples
– Application Generators
– CASE Tools
– OMG MDA & Executable UML

• fUML (Foundational Subset for Executable UML Models)
– operational style description of structural and behavioral semantics

• Alf (Action Language for fUML)
– textual description of fine-grained behavior of the system

(concrete syntax corresponding to fUML abstract syntax)

Using models to raise
level of abstraction

31.12.13 Copyright © Alar Raabe 201323

Domain Model → Source for Solution

Executable
Domain Model

Interface Models
(WUI/GUI/RIA)Storage Model

(RDBMS)

External Model
(XML)

Other Domain Models

Mapping 1

Mapping 2

Mapping 4Mapping 3

Domain Model

GeneratorGenerators

Other Domain Models

31.12.13 Copyright © Alar Raabe 201324

Analysis Model Implementation Model
(Concrete Software)

«transformation»

Problem domain

System requirements

Analysts

knowledge

Solution domain
knowledge

Transformation
Rules

Analyst
Analysis Model

Analysis Model
Problem Domain

Solution Domain

Architect

MDSD Approach

Solution knowledge is
often not separated from

technical knowledge !

Language

Generic
Solution

31.12.13 Copyright © Alar Raabe 201325

OMG MDA Approach

Analysis Model Implementation Model
(Concrete Software)

«transformation»

Problem domain

System requirements

Analysts

knowledge

Solution domain
knowledge

Transformation
Rules

Analyst
Analysis Model

Analysis Model
Problem Domain

Solution Domain

Architect

OMG MDA
CIM

OMG MDA
QVT

OMG MDA
PIM

OMG MDA
PSM

Domain Model –
Problem Model

Technology
Neutral Model

of Solution

Model of Solution
for Specific
Technology

31.12.13 Copyright © Alar Raabe 201326

Generative Programming

Configuration
knowledge
●illegal feature
combinations
●default settings
●default dependencies
●construction rules
●optimizations

Problem Space
●domain specific
concepts
●features

Solution Space
●elementary
components
●maximum
combinability
●minimum
redundancy

[Czarnecki, Eisenecker]

31.12.13 Copyright © Alar Raabe 201327

Generative Programming

Configuration
knowledge
●illegal feature
combinations
●default settings
●default dependencies
●construction rules
●optimizations

Problem Space
●domain specific
concepts
●features

Generator
Reflection

Components +
System Family
Architecture

Domain Specific
Language (DSL)

Solution Space
●elementary
components
●maximum
combinability
●minimum
redundancy

[Czarnecki, Eisenecker]

Generator Technologies
●simple model traversal
●templates and frames
●transformation systems
●languages with meta-
programming support
●extensible programming systems

DSL Technologies
●programming language
●extensible languages
●textual languages
●graphical languages
●interactive wizards
●any mixture of above

Component Technologies
●generic components
●component models
●AOP approaches

31.12.13 Copyright © Alar Raabe 201328

Domain Specific Languages

• Domain-Specific Languages (DSLs) – customized languages that
provide a high-level of abstraction for specifying a problem concept in
a particular domain

• Defining DSL
– concrete syntax – representation of a DSL in a human-usable form
– abstract syntax – elements + relationships without representation
– semantics – meaning of the expressable phrases and sentences

• Technologies
– Internal DSLs

• Built-in features of languages (e.g. C++ templates, Lisp Macros, ...)
• Extensible languages (e.g. Scala, Ruby, JavaScript, Seed7, XL, ...)
• Well-Designed APIs

– External DSLs
• Textual languages (e.g. XML, xText, ...)
• Graphical languages (e.g. UML, MetaCASE, ...)
• Interactive wizards

WARNING:
Don't be too Clever !

31.12.13 Copyright © Alar Raabe 201329

Internal DSL

• Ojay (JavaScript internal DSL)

...
// Define some validation rules

 form('signup')
 .requires('username') .toHaveLength({minimum: 6})
 .requires('email') .toMatch(EMAIL_FORMAT, 'must be a valid email address')
 .expects('email_conf') .toConfirm('email')
 .expects('title') .toBeOneOf(['Mr', 'Mrs', 'Miss'])
 .requires('dob', 'Birth date').toMatch(/^\d{4}\D*\d{2}\D*\d{2}$/)
 .requires('tickets') .toHaveValue({maximum: 12})
 .requires('phone')
 .requires('accept', 'Terms and conditions').toBeChecked('must be accepted');
...

EXAMPLE

31.12.13 Copyright © Alar Raabe 201330

External DSL

• xText (oAW)

• Example

Entity :
 "entity" name=ID ("extends" superType=[Entity])?
 "{"
 (features+=Feature)*
 "}";
Feature :
 Attribute | Reference;
Attribute :
 type=ID name=ID ";";
Reference :
 "ref" (containment?"+")? type=ID name=ID ("<->" oppositeName=ID)? ";";

entity Customer {
 String fullName;
 ref +Address address <-> resident;
 Integer ageInFullYears;
 Boolean isPremiumCustomer;
}

Model in EBNF

<entity> ::= “entity” <name> [“extends” <name>]
“{“ { <feature> } “}”

<feature> ::= <attribute> | <reference>
<attribute> ::= <type> <name> “;”
<reference> ::= “ref” [“+”] <type> <name> [“<->” <name>] “;”

EXAMPLE

31.12.13 Copyright © Alar Raabe 201331

Compiler

DSL Implementation
1

Abstract Syntax (AST)

DSL text Parse Generate Code

• Compiler-Based

Abstract
Representation

Editable, Storable
Representation

Executable
Representation

31.12.13 Copyright © Alar Raabe 201332

Language Workbench

DSL Implementation
2

Abstract Syntax (AST)

Form Editor

Generate Code

• Language Workbench

Abstract
Representation

Executable
Representation

Edit

Text Editor

Edit

Editable
Representations

Editable
Representations

Storable
Representation

31.12.13 Copyright © Alar Raabe 201333

MDSD Implementation

• Model Bus (e.g. Eclipse MDDi)

Model Bus

Business
Modeling

Software
Modeling

Model
Transformation

Model
Repository

Code
Generation

Document
Generation

Orchestration

Model
Observation

Model
Validation

XX √√

31.12.13 Copyright © Alar Raabe 201334

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Model-Driven Development Methods
• Generative Programming
• Domain Specific Languages

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

31.12.13 Copyright © Alar Raabe 201235

Network of Problem Domains → Specific Domain is
a Combination of Generic Domains

Financial Business
Domain

Insurance Business
Domain

Life Insurance
Domain

Property & Casualty
Insurance Domain

Domain
Banking Business

Unit-linked Life
Insurance Domain

Universal Life
Insurance Domain

Domain of Concrete
Insurance Company

. . .

. . .

Domain of Concrete
Insurance Company

PROBLEM

31.12.13 Copyright © Alar Raabe 201236

Business SupportBusiness Services
Fu

n
ct

io
n
a
lit

y
U

se
r

In
te

rf
a
ce

Different Problem and Solution Domains in a Specific
System → Many Dimensions

P
ro

ce
ss

e
s

R
u

le
s

C
a
lc

u
la

ti
o
n

s
R

e
p

o
rt

in
g

P
e
rs

is
te

n
ce

In
te

ra
ct

io
n

Financial Services

Banking Insurance

Customer Mgmt. Resource Mgmt.

Accounting Billing

PROBLEM

31.12.13 Copyright © Alar Raabe 201337

Model Management

• Relationships between Models
– “inheritance” – extension of models (package/model merge in UML2)
– correspondence mappings between models
– references to external models (package/model import in UML 2)

• Operations on Models (e.g. Epsilon & Atlas on Eclipse)
– calculations on models

• model validation
• comparing models
• transformations of models (to other models or to text)

– editing models
• graphical model editors
• form-based model editors
• text-based model editors

– storing models
• repository
• source code control
• embedding into code

31.12.13 Copyright © Alar Raabe 201338

Domain-Driven Design Best Practices

• Use the Domain Model as Ubiquitous Language

• Design to Reflect Domain Model –

Avoid Divide between Analysis and Design

– Domain Model should be constrained to support efficient implementation

• Express Domain Model in Code – Hands-On Modelling
– with Services, Entities, Aggregates and Value Objects

• Isolate Domain with Layered Architecture
– Presentation Layer
– Application Layer
– Domain Layer
– Infrastructure Layer

[Evans]

31.12.13 Copyright © Alar Raabe 201339

MDSD Best Practices
1

• During the Software Development

– Don't Reverse Engineer – Model is Primary Artifact
– Don't Manage Generated Code in Revision Control System
– Integrate the Generator/Generation into the Build Process
– Regenerate Frequently
– Use Meta-Model as Ubiquitous Language
– Use Graphical and Textual Syntax to Support Modeller
– Use Configuration by Exception – use implicit knowledge

• When Generating the Code

– Generate Clean and Readable Code
– Use the Compiler (to Guide the Developer)
– Separate the Generated and Manually Created Code

[Voelter, ...]

31.12.13 Copyright © Alar Raabe 201340

MDSD Best Practices
2

• During the Language and Tools Development

– Develop DSLs Incrementally
– Teamwork (Tools) Prefer(s) Textual DSLs
– Many Small DSLs – Concentrate on the Task
– Select Suitable Target – Avoid too Complex Meta-Models

• During the Tools Development

– Test the Generator(s) (using Reference Model)
– Develop Model Validation (Iteratively)
– Use Model Transformations to Reduce Complexity
– Keep Translation Steps as Small as Possible

[Voelter, ...]

31.12.13 Copyright © Alar Raabe 201341

Overview of Once&Done Software Process

• Beginning
• Analysis

• Business Domain Analysis
• Modelling Domain Objects
• Modelling Insurance Products

• Design
• Refinement of Analysis Models
• Design of the Database Schema
• Design of the User Interface
• Design of the Printouts

• Implementation
• Generation of Code
• Implementation of Business Logic
• Installation of Business Objects

into the Base System

• Finalisation

Legacy Systems

Repository

Analysis

Rational Rose

Working System

Database
Code & Parameters

EXAMPLE

A model-driven
technology for insurance

systems product-line

31.12.13 Copyright © Alar Raabe 201342

OperationButton Field

Value

Control Group

Control Link

Template

View

Feature
Presents

Relationship

Value Set

Constant

Analysis Coefficient Rating Formula

Business Process

Condition

Validation Rule

Action

Authority Category

Group

User

Calculation Rule

Business Entity

0..* 1..*0..* 1..*

Presents
Source

Target

Extends

Rating Feature

Attribute

Extended OOA/OOD Meta-Model

a DSL for Insurance
Systems

EXAMPLE

31.12.13 Copyright © Alar Raabe 201343

Once&Done – Results

• Reduction of development time
– standard functionality generated from model
– some parts of the model interpreted at run-time

• Quality of developed code
– generated code had hints for developers
– regeneration forced to conform to architecture

• Flexibility of resulting systems
– business people were able to maintain parameters

• Technology independence of domain knowledge
– easy transition from C/C++ client-server to

• Java-based Rich Client, further
• HTML-based web-application

EXAMPLE

31.12.13 Copyright © Alar Raabe 201344

Comparing Model-Driven Method with Traditional

• Effort for First Iteration – Basically CRUD Application

• Manually coded Claims application
– Volume

• Domain Model: 30 entities, 30 relationships
• Functionality: 10 use-cases (CRUD excl.)
• User Interface: 34 screens

– Effort: ~800 man-days (~50 analysis, ~550 implementation)

• Generated Claims application
– Volume

• Domain Model: 20 entities, 45 relationships
• Functionality: 15 use-cases (CRUD excl.), 20 business rules
• User Interface: 25 screens

– Effort: ~130 man-days (~80 analysis, ~2 implementation)

• Generated Claims was regenerated on different platform

EXAMPLE

31.12.13 Copyright © Alar Raabe 201345

Comparing Model-Driven Method with Traditional

Traditional

Model-Driven

Analysis

Testing

Implementation

EXAMPLE

31.12.13 Copyright © Alar Raabe 201346

Lessons Learned

 Modelling is hard work and requires domain knowledge

 Project budget structure changes when using generation

 Generated system can be used as analysis tool

 Repository is good for concurrent work, analysis and synthesis,
model checking and transformations, but has problems with
versioning and version management

 Textual models can be versioned as code, but this is not best for
concurrent work with graphical models

 Interpreters of meta-info (heavily parametric software components)
are very difficult to debug – here generation/compilation is better

Too much time for solving
the business problem !

EXAMPLE

31.12.13 Copyright © Alar Raabe 201347

Projects become more predictable

Statistics from
CA Technologies

31.12.13 Copyright © Alar Raabe 201348

RISLA – Language for Product Models

• Started 1990 – CAP, MeesPierson, ING, CWI
• Describes interest rate products

– Characterised by cash-flows

• Generates
– Database
– User Interface
– Product Logic

• Example:
– Loan

product LOAN

declaration
 contract data
 PAMOUNT : amount %% Principal Amount
 STARTDATE : date %% Starting date
 MATURDATE : date %% Maturity data
 INTRATE : int-rate %% Interest rate
 RDMLIST := [] : cashflow-list %% List of redemptions.

 information
 PAF : cashflow-list %% Principal Amount Flow
 IAF : cashflow-list %% Interest Amount Flow

 registration
 %% Register one redemption.
 RDM(AMOUNT : amount, DATE : date)

...

a DSL for credit products

EXAMPLE

31.12.13 Copyright © Alar Raabe 201349

RISLA – Result

RISLA
Product Definition

Data Structures
(VSAM)

Input Screens
(CICS)

Product Management
Routines – Logic

(Cobol)

RISLA
Compiler

• Success
– Business people use – appropriate level of abstraction
– Time to market decreased from 3 months to 3 weeks
– Library of 100 components and 50 products
– Survived merger – flexibility

EXAMPLE

31.12.13 Copyright © Alar Raabe 201350

MLFi – Language for Financial Instruments and
Contracts

• Financial Instrument (American Option)

• Custom-built Contract

let option1 =
 let strike = cashflow(USD:2.00, 2001-12-27) in
 let option2 =
 let option3 =
 let t = 2001-12-18T15:00 in either
 ("--> GBP payment", cashflow(GBP:1.20, 2001-12-30))
 ("reinvest in EUR + receive cash later",
 (give(cashflow(EUR:1.00, t))) 'and' cashflow(EUR:3.20, 2001-12-29))
 t in either
 ("--> EUR payment", cashflow(EUR:2.20, 2001-12-28))
 ("wait for last option", option3) 2001-12-11T15:00 in
 (either
 ("--> USD payment", cashflow(USD:1.95, 2001-12-29))
 ("wait for second option", option2) 2001-12-04T15:00) 'and' (give (strike))

american :: (Date,Date) -> Contract -> Contract
american (t1,t2) u

= get (truncate t1 opt) `then` opt
where

opt :: Contract
opt = anytime (perhaps t2 u) Against the promise to pay $2.00 on

27.12, the holder has the right, on
04.12, to choose between receiving
$1.95 on 29.12, or having the right,
on 11.12, to choose between
receiving €2.20 on 28.12, or having
the right, on 18.12, to choose
between receiving £1.20 on 30.12,
or paying immediately €1.0 and
receiving €3.20 on 29.12.

a DSL for financial
instruments and contracts

EXAMPLE

31.12.13 Copyright © Alar Raabe 201351

Generating Code for Financial Instrument
Agreement Valuation

MLFi Source
Code

Contract code

Process code

Contract code
other state

Register
Process code

MC
LR code

Dyn. Prog.
code

Monte Carlo
code

Model def..

Lattices, pde's,...Lattices, pde's,... MonteCarlo pricersMonteCarlo pricers

Syntax check, error detection,
normalisation,...

Pretty-Print in MLFi
correct code

Contract level optimisation,
dead contract elimination,
temporal reorganisation,...

Stochastic Processes
no more other types

Translate to process
primitives + basic
factors of model

Process level optimisations
loop fusions, algebraic
process equalities,...

EXAMPLE

31.12.13 Copyright © Alar Raabe 201352

Content

• Introduction
• Common Language – some Definitions
• The Problem
• Beginning (Excursion into the History)

• Models in Software Development
– Direct Modeling

• Convergent Engineering
• Domain-Driven Design

– Models as Primary Artifacts
• Generative Programming
• Domain Specific Languages
• Model-Driven Development Methods

• Practical Aspects
• Model Management
• Best Practices
• Examples

• Conclusions
• References

31.12.13 Copyright © Alar Raabe 201353

Compared to the Traditional Development

Implementation Platform

Solution Description

Implementation Platform

Solution Description

Traditional Model-Driven

Problem Description Problem Description

Reducing the gap

31.12.13 Copyright © Alar Raabe 201354

Conclusions

• No Round-Trips
– when you are Model-Driven, models are primary artifacts (models are

your code)

• Model is Not the Picture
– model is a collection of structured information in the form, which is best

fore given Domain (pictures should be Model-Driven)

• Keep Focus, Don't Mix Domains (fight Complexity)
– to represent information about problems/solutions in different Domains use

several Models with different Meta-Models

• Let the Models drive the Analysis & Design
– models are the ubiquitous language for stakeholders

• This is not a Religion !
– use Model-Driven Approaches only where it makes sense and brings

value

31.12.13 Copyright © Alar Raabe 201355

References

• Some books to read
– Krzysztof Czarnecki and Ulrich W. Eisenecker, Generative Programming -

Methods, Tools, and Applications, 2000
• http://www.generaative-programming.org/

– Tom Stahl, Markus Völter, Model-Driven Software Development:
Technology, Engineering, Management, 2006

• http://www.voelter.de/publications/books-mdsd-en.html
– Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of

Software, 2004
• http://domaindrivendesign.org/

• Some WWW sites to look
• http://www.omg.org/mda
• http://www.eclipse.org/modeling/emf/
• http://www.infoq.com/minibooks/domain-driven-design-quickly
• http://www.andromda.org/
• http://www.openarchitectureware.org/
• http://www.voelter.de/services/mdsd-tutorial.html
• http://www.martinfowler.com/bliki/dsl.html
• http://www.prakinf.tu-ilmenau.de/~czarn/gpsummerschool02/

http://www.generaative-programming.org/
http://www.voelter.de/publications/books-mdsd-en.html
http://domaindrivendesign.org/
http://www.omg.org/mda
http://www.eclipse.org/modeling/emf/
http://www.infoq.com/minibooks/domain-driven-design-quickly
http://www.andromda.org/
http://www.openarchitectureware.org/
http://www.voelter.de/services/mdsd-tutorial.html
http://www.martinfowler.com/bliki/dsl.html
http://www.prakinf.tu-ilmenau.de/~czarn/gpsummerschool02/

31.12.13 Copyright © Alar Raabe 201356

Thank You!

31.12.13 Copyright © Alar Raabe 201357

LWC 2013 – QL (questionnaires)

EXAMPLE

form Box1HouseOwning {
hasSoldHouse: “Did you sell a house in 2010?” boolean
hasBoughtHouse: “Did you buy a house in 2010?” boolean
hasMaintLoan: “Did you enter a loan for maintenance/reconstruction?” boolean
if (hasSoldHouse) {

sellingPrice: “Price the house was sold for:” money
privateDebt: “Private debts for the sold house:” money
valueResidue: “Value residue:” money(sellingPrice - privateDebt)

}
}

Did you sell a house in 2010? [X]
Did you buy a house in 2010? []

Did you enter a loan for maintenance/reconstruction? []

1

Did you sell a house in 2010? [X]
Did you buy a house in 2010? []

Did you enter a loan for maintenance/reconstruction? []
--

Price the house was sold for: [230000]
Private debts for the sold house: [180000]

Value residue: [50000]

2

31.12.13 Copyright © Alar Raabe 201358

Android Layouts

EXAMPLE

<?xml version="1.0" encoding="utf-8"?>
<TableLayout android:id="@+id/TableLayout01"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <TableRow android:id="@+id/TableRow01">
 <TextView android:id="@+id/TextView01" android:text="First Name:"
 android:width="100px" />
 <EditText android:id="@+id/EditText01" android:width="220px" />
 </TableRow>

 <TableRow android:id="@+id/TableRow02">
 <TextView android:id="@+id/TextView02" android:text="Second Name:" />
 <EditText android:id="@+id/EditText02" />
 </TableRow>

 <TableRow android:id="@+id/TableRow03">
 <Button android:id="@+id/Button01"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Submit" />

 <Button android:id="@+id/Button02"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="Reset"
 android:width="100px" />
 </TableRow>
</TableLayout>

31.12.13 Copyright © Alar Raabe 201359

Example of Using Once&Done

• “Gadget Insurance”
– Gadgets consist of Widgets
– Gadgets can be insured against Fire and Theft

• Analysis model of “Gadget Insurance”

• Extending insurance domain model with “Gadget Insurance”

• “Gadget Insurance” product model

• Design model for “Gadget Insurance” policy management system

EXAMPLE

31.12.13 Copyright © Alar Raabe 201360

Widget

Replacement

TheftCoverage

Renewal CostReplacement

FireCoverage

GadgetPolicy

GadgetGadgetCoverage

“Gadget Insurance” Analysis Model

EXAMPLE

31.12.13 Copyright © Alar Raabe 201361

Independent Dependent

Business Entity

Coverage Base

Insurable

GadgetPolicy

GadgetCoverage

Widget

TheftCoverage FireCoverage

Policy

ReplacementRisk Coverage

Covered Loss Type

Renewal Cost

Coverage Category

Gadget

“Gadget Insurance” Model as Extension to
Insurance Domain Model

EXAMPLE

31.12.13 Copyright © Alar Raabe 201362

Gadget Policy Template
: GadgetPolicy

Gadget Template
: Gadget

Gadet Coverage Template
: GadgetCoverage

Theft Coverage Template
: TheftCoverage

Replacement Template
: Replacement

“Gadget Insurance” Product Model

EXAMPLE

31.12.13 Copyright © Alar Raabe 201363

GadgetPage
<<View>>

WidgetsPage
<<View>>

ErrorPage
<<View>>

CoveragePage
<<View>>

Business Entity

InsurableNoteBook
<<View>>

Insurable

GadgetNoteBook
<<View>>

Gadget

NoteBook
<<View>>

NoteBookPage
<<View>>

WidgetPage
<<View>>

Widget WidgetNoteBook
<<View>>

“Gadget Insurance” Design Model

EXAMPLE

31.12.13 Copyright © Alar Raabe 201364

Steps of Model-Oriented Software Development

Problem Domain

Specific Problem System Model

Solution Domain

Architecture Style
«metamodel»

Problem Domain
«metamodel»

Metamodel

«instanceOf»

Solution Domain
Analysis

Problem Domain
Analysis

Specific Problem
Analysis

Transformation
«metamodel»

Domain Metamodel
Problem to Solution

Mapping Design

Synthesis Rules

«instanceOf»

«subset»

Architecture Model

«instanceOf»

Generic Solution
Design

Synthesis of
Specific System

Implementation
of Architecture

«instanceOf»

Architecture
Components

Specific System
Implementation

«uses»

Reference Model

31.12.13 Copyright © Alar Raabe 201365

MDSD Benefits
1

• Reasons for MDSD – when to use
– domain experts can formally specify their knowledge
– need to provide different implementations of the same model
– need to capture knowledge about the domains and their mapping
– separate functionality from implementation details
– same model is source for several targets (consistency)
– domain specific product-lines and software system families

• Benefits MDSD – why to use
– models directly represent domain knowledge – are free from

implementation artifacts (separation of concerns)
– generation for various platforms is possible
– experts of different domains don't interfere
– domain experts are directly involved in development
– due to automation development is more efficient
– enforcement of architectural constraints/rules/patterns
– cross-cutting concerns are easily addressed by generators

31.12.13 Copyright © Alar Raabe 201366

MDSD Benefits
2

• Benefits for Quality
– explicit, well-defined architecture is needed
– transformations capture expert knowledge
– architecture defines strict programming model for manually developed

parts
– generator doesn't produce accidental/random errors
– documentation is always up-to-date

• You are forced to
– do domain/application scoping
– do variability management
– create well-defined architecture
– understand domain and target architecture

31.12.13 Copyright © Alar Raabe 201367

MDSD Costs

• You need additional skills
– domain analysis
– meta-modelling
– generator development
– architecture

• Development process is more complex
– domain architecture development
– application development

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Intermediary Codes
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

