
30.6.09 Copyright © Alar Raabe 20091

Software Architecture

Quality Attributes

Alar Raabe

30.6.09 Copyright © Alar Raabe 20092

Content

• Summary from Previous Seminar

• Software Quality Attributes
– Quality Attributes Addressed by Software Architecture
– Categories of Software Quality Attributes

• Quality Attribute Driven Design
– Attribute Trade-Off Analysis Method
– SOA Quality Attribute Scenarios

• Group Work

• Discussion
– Our common language
– How we (should) evaluate software architectural decisions

architecture is the primary
carrier of quality attributes

30.6.09 Copyright © Alar Raabe 20093

What is (Software) Architecture

• (Software) Architecture is a
– fundamental conception of a (software) system in its

• environment embodied in its
• elements,
• their relationships to each other and to the environment, and
• principles guiding (software) system design and evolution

• (Software) Architectural Style
– Characterizes a family/class of system architectures that are

related by shared structural and semantic properties
– Defines

• a vocabulary of design elements (components & connectors)
• design rules, or constraints (incl. topology)
• semantic interpretation
• analyses that can be performed on systems built in that style

elements, relationships and
principles that correspond to

system concerns

30.6.09 Copyright © Alar Raabe 20094

Group Work Results: CDI-Hub

– stakeholders

– concerns

– viewpoints

– relevant architectural styles

– properties of interest

30.6.09 Copyright © Alar Raabe 20095

Quality Attributes of Software

• (Software) Quality
– the totality of characteristics of an entity that bear on its ability

to satisfy stated and implied needs [ISO/IEC 9126]

• (Software) Quality Attribute
– characteristic of software that affects its quality

• Categorization of Software Quality Attributes

– End User's View – Developer's View – Business's View

– Runtime Qualities – Non-Runtime Qualities

– Quality Attributes Specific to the Architecture

quality is fitness for use

J. M. Juran

30.6.09 Copyright © Alar Raabe 20086

Quality Attributes of Software

• End User's View
– Functionality
– Interoperability
– Security
– Performance (Efficiency)
– Resource Efficiency
– Availability and Reliability
– Recoverability
– Usability

CMU SEI

• Developer's View
– Modifiability
– Portability (Extensibility)
– Reusability
– Integrability
– Testability

• Business's View
– Time To Market
– Cost vs. Benefits
– Projected Life-time
– Targeted Market
– Integration with Legacy
– Roll-out (Roll-back) Schedule

30.6.09 Copyright © Alar Raabe 20087

Quality Attributes addressed by
Architecture (1)

• Functionality
– ability of the system to satisfy the purpose for which it was

designed
– drives the initial decomposition of the system

• Interoperability
– quality of a system that enables it to work with other systems

(incl. systems not yet known)

• Security
– ability to enforce authorization, authentication, and deliberate

denial of service attacks

• Performance (efficiency)
– represents the responsiveness of the system (e.g., the time

required to respond to events or the number of events processed
in some period of time)

CMU SEI

30.6.09 Copyright © Alar Raabe 20088

Quality Attributes addressed by
Architecture (2)

• Resource Efficiency
– efficient utilization of resources

• Modifiability
– ability to grow an architecture over time

• Availability and Reliability
– availability is an attribute that measures the proportion of time

the system is up and running
– reliability is an attribute that measures the system’s ability to

continue operating over time

• Recoverability
– ability of a system to pick up where it left off after a shutdown or

crash

CMU SEI

30.6.09 Copyright © Alar Raabe 20089

Quality Attributes addressed by
Architecture (3)

• Usability
– usability with respect to the end user, system maintainers,

operators, etc. (measured using scenarios)
– composed of

• Learnability and Memorability
• Efficiency
• Error avoidance and Error handling
• Satisfaction

• Portability (Extensibility)
– ability to reuse a component in a different application or

operating environment (a special kind of modifiability)
– related to

• Adaptability
• Installability
• Conformance
• Replaceability

CMU SEI

30.6.09 Copyright © Ala Raabe 200810

Software Quality Attributes (1)

• Functionality
– A set of attributes that bear on the existence of a set of functions

and their specified properties. The functions are those that
satisfy stated or implied needs.

• Suitability, Accuracy, Interoperability, Compliance, Security

• Reliability
– A set of attributes that bear on the capability of software to

maintain its level of performance under stated conditions for a
stated period of time.

• Maturity, Recoverability, Fault Tolerance

• Usability
– A set of attributes that bear on the effort needed for use, and on

the individual assessment of such use, by a stated or implied set
of users.

• Learnability, Understandability, Operability

ISO/IEC 9126:2001

30.6.09 Copyright © Ala Raabe 200811

Software Quality Attributes (2)

• Efficiency
– A set of attributes that bear on the relationship between the level

of performance of the software and the amount of resources
used, under stated conditions.

• Time Behaviour, Resource Behaviour

• Maintainability
– A set of attributes that bear on the effort needed to make

specified modifications.
• Stability, Analyzability, Changeability, Testability

• Portability
– A set of attributes that bear on the ability of software to be

transferred from one environment to another.
• Installability, Replaceability, Adaptability, Conformance (similar to

compliance, above, but here related specifically to portability, e.g.
conformance to a particular database standard)

ISO/IEC 9126:2001

30.6.09 Copyright © Ala Raabe 200812

Comparing CMU SEI and ISO/IEC
Software Quality Attributes

• Functionality

• Interoperability

• Security

• Availability and Reliability

• Recoverability

• Usability

– Learnability, Memorability, Error
avoidance & handling, Satisfaction

• Performance (Efficiency)

• Resource Efficiency

• Modifiability

• Portability (Extensibility)

– Installability, Replaceability,
Adaptability, Conformance

• Functionality

– Suitability, Accuracy,
Interoperability, Compliance,
Security

• Reliability

– Maturity, Recoverability, Fault
Tolerance

• Usability

– Learnability, Understandability,
Operability

• Efficiency

– Time Behaviour, Resource Behaviour

• Maintainability

– Stability, Analyzability,
Changeability, Testability

• Portability

– Installability, Replaceability,
Adaptability, Conformance

30.6.09 Copyright © Ala Raabe 200813

Quality Attribute Driven Design

• Example: Deriving REST (Fielding)

• CMU SEI Architecture-Centric Methods

• CMU SEI Architecture Tradeoff Analysis Method
– Quality Attribute Scenarios
– Quality Attribute Models
– Risk Themes

• Example: SOA Quality Attribute Scenarios

30.6.09 Copyright © Alar Raabe 200914

Example: Deriving REST

• Properties of Interest
– Performance (network and user-perceived)
– Scalability
– Simplicity
– Modifiability (incl. Extensibility and Reusability)
– Visibility
– Portability

• Constituents
– Client Server Style → modifiability
– Stateless Communication → visibility, reliability, scalability
– Cache → network efficiency
– Uniform Interface → simplicity, portability
– Layered System Style → simplicity, scalability
– Code-on-demand → modifiability (extensibility), simplicity

Fielding

30.6.09 Copyright © Alar Raabe 200915

Architecture-Centric Methods

• A Famility of Scenrio-Driven and Quality Attribute Driven
Development Methods

– Software Architecture Analysis Method (SAAM)

– Architecture Tradeoff Analysis Method (ATAM)
• to assess the consequences of architectural decision alternatives in

light of quality attribute requirements

– Quality Attribute Workshop (QAW)
– Cost-Benefit Analysis Method (CBAM)
– Active Reviews for Intermediate Designs (ARID)
– Attribute-Driven Design (ADD)

CMU SEI

30.6.09 Copyright © Alar Raabe 200916

ATAM Steps – Architect-Centric Phase

1.Present the ATAM – quick overview of steps, techniques, outputs
2.Present the business drivers and context for architecture
3.Present the architecture

● the architect presents an overview of the architecture

4. Identify architectural approaches
● the evaluation team and the architect itemize the architectural

approaches discovered in the previous step

5.Generate the quality attribute utility tree
● a small group of technically oriented stakeholders identifies,

prioritizes, and refines the most important quality attribute goals in a
utility tree format

6.Analyze the architectural approaches
● the evaluation team probes the architectural approaches in light of

the quality attributes to identify risks, non-risks, and tradeoffs (to
probe the architecture, they use quality attribute questions)

CMU SEI

30.6.09 Copyright © Alar Raabe 200917

ATAM Steps – Stakeholder-Centric Phase

7.Brainstorm and prioritize scenarios
● a larger and more diverse group of stakeholders creates scenarios

that represent their various interests; then the group votes to
prioritize the scenarios based on their relative importance

8.Analyze architectural approaches
● the evaluation team continues to identify risks, nonrisks, and

tradeoffs while noting the impact of each scenario on the
architectural approaches

9.Present results
● the evaluation team recapitulates the ATAM steps, outputs, and

recommendations

CMU SEI

30.6.09 Copyright © Ala Raabe 200818

Architecture Tradeoff Analysis Method

• Output
– a set of identified

architectural approaches

– "utility tree" – driving
architectural requirements

– the set of scenarios mapped
onto the architecture

– a set of quality-attribute
specific questions and
responses

– a set of identified risks

– a set of identified non-risks

– a set of risk themes that
threaten to undermine the
business goals for the
system

CMU SEI

30.6.09 Copyright © Ala Raabe 200819

Environment

Quality Attribute Scenarios

• Source of stimulus
– User or other System

• Stimulus
–

• Environment
– Conditions

• Artifact
– System or some part

• Response
–

• Response measure
–

Stimulus ResponseArtifact

Source of
Stimulus

Response
Measure

|''
''|

'''

'|'''
'|''''|''''|''''|

to represent
stakeholders' concerns

30.6.09 Copyright © Ala Raabe 200820

Quality Attribute Tradeoff Points
you can't eat your cake

and have it too!

30.6.09 Copyright © Alar Raabe 200921

Metrics for Software Quality Attributes

• Maintainability
– Analyzability

• cyclomatic number
• number of statements
• comments rate
• calling proof

– Changeability
• number of jump
• number of nested levels
• average size of statement
• number of variables

• Maintainability (cont.)
– Stability

• number of parameters
referenced

• number of global variables
• number of parameters

changed
• number of called

relationships

– Testability
• number of non-cyclic path
• number of nested levels
• cyclomatic number
• number of call-paths

|''
''|

'''

'|'''
'|''''|''''|''''|

30.6.09 Copyright © Ala Raabe 200822

Utility Tree – for Identifying & Prioritizing
importance

(High, Medium, Low)
difficulty

(High, Medium, Low)

30.6.09 Copyright © Ala Raabe 200823

Risk Themes

30.6.09 Copyright © Alar Raabe 200924

SOA Quality Attribute Scenarios (1)

• P1
– A sporadic request for service ‘X’ is received by the server during

normal operation
– The system processes the request in less than ‘Y’ seconds

• P2
– The service provider can process up to ‘X’ simultaneous requests

during normal operation, keeping the response time on the
server less than ‘Y’ seconds

• P3
– The roundtrip time for a request from a service user in the local

network to service ‘X’ during normal operation is less than ‘Y’
seconds

Performance

30.6.09 Copyright © Alar Raabe 200925

SOA Quality Attribute Scenarios (2)

• A1
– An improperly formatted message is received by a system during

normal operation
– The system records the message and continues to operate

normally without any downtime

• A2
– An unusually high number of suspect service requests are

detected (denial-of-service attack), and the system is overloaded
– The system logs the suspect requests, notifies the system

administrators, and continues to operate normally

• A3
– Unscheduled server maintenance is required on server ‘X’
– The system remains operational in degraded mode for the

duration of the maintenance

Availability

30.6.09 Copyright © Alar Raabe 200926

SOA Quality Attribute Scenarios (3)

• A4
– A service request is processed according to its specification for

at least 99.99% of all requests

• A5
– A new service is deployed without impacting the operations of

the system

• A6
– A third-party service provider is unavailable
– Modules that use that service respond appropriately regarding

the unavailability of the external service and the system
continues to operate without failures

Availability

30.6.09 Copyright © Alar Raabe 200927

SOA Quality Attribute Scenarios (4)

• S1
– A third-party service with malicious code is used by the system
– The third-party service is unable to access data or interfere with

the operation of the system
– The system notifies the system administrators

• S2
– An attack is launched attempting to access confidential customer

data
– The attacker is not able to break the encryption used in all the

hops of the communication and where the data is persisted
– The system logs the event and notifies the system administrators

Security

30.6.09 Copyright © Alar Raabe 200928

SOA Quality Attribute Scenarios (5)

• S3
– A request needs to be sent to a third-party service provider, but

the provider’s identity can not be validated
– The system does not make the service request and logs all

relevant information
– The third party is notified along with the system administrator

• S4
– An unauthorized service user attempts to invoke a protected

service provided by the system
– The system rejects the attempt and notifies the system

administrator

Security

30.6.09 Copyright © Alar Raabe 200929

SOA Quality Attribute Scenarios (6)

• S5
– An attacker is modifying incoming service requests in order to

launch an attack on the system infrastructure
– The system identifies and discards all tampered messages, logs

the event, and notifies the system administrators

• S6
– An attacker attempts to exploit the service registry in order to

redirect service requests
– The service registry denies access to information in the registry,

logs the event, and notifies the system administrators

Security

30.6.09 Copyright © Alar Raabe 200930

SOA Quality Attribute Scenarios (7)

• T1
– An integration tester performs integration tests on a new version

of a service that provides an interface for observing output
– 90% path coverage is achieved within one personweek

Testability

30.6.09 Copyright © Alar Raabe 200931

SOA Quality Attribute Scenarios (8)

• I1
– A new business partner that uses platform ‘X’ is able to

implement a service user module that works with our available
services in platform ‘Y’ in two person-days

• I2
– A transaction of a legacy system running on platform ‘X’ is made

available as a Web service to an enterprise application that is
being developed for platform ‘Y’ using the Web services
technology

– The wrapping of the legacy operation as a service with proper
security verification, transaction management, and exception
handling is done in 10 person-days

Interoperability

30.6.09 Copyright © Alar Raabe 200932

SOA Quality Attribute Scenarios (9)

• M1
– A service provider changes the service implementation, but the

syntax and the semantics of the interface do not change
– This change does not affect the service users

• M2
– A service provider changes the interface syntax of a service that

is publicly available
– The old version of the service is maintained for 12 months, and

existing service users are not affected within that period

• M3
– A service user is looking for a service. A suitable service is found

that contains no more than ‘X’ percentage of unneeded
operations, so the probability of the service provider changing is
reduced

Modifiability

30.6.09 Copyright © Alar Raabe 200933

SOA Quality Attribute Scenarios (10)

• R1
– A sudden failure occurs in the runtime environment of a service

provider
– After recovery, all transactions are completed or rolled back as

appropriate, so the system maintains uncorrupted, persistent
data

• R2
– A service becomes unavailable during normal operation. The

system detects and restores the service within two minutes

Reliability

30.6.09 Copyright © Alar Raabe 200934

Group Work: CDI-Hub

– quality attributes

– quality attribute scenarios

– architectural styles

30.6.09 Copyright © Alar Raabe 200935

Value of Software Architecture

• Value of Software Architecture to Stakeholders

• Measuring Value of Software Architecture

• Option Value of Software Architecture

not documenting, but understanding!

30.6.09 Copyright © Alar Raabe 200936

Value of Software Architecture to
Stakeholders

• Users and operators of the system
– understand the external system behavior
– understand how to operate system

• acquirers and owners of the system
– understand economical issues connected to the system

• suppliers and developers of the system
– plan development and construction
– estimate system properties

• builders and maintainers of the system
– understand the system internals

80% of time during
maintenance is spent
in design-rediscovery

Davidson, 2002

30.6.09 Copyright © Alar Raabe 200937

Value of Good Architecture (1)

• Developers & Suppliers
– Speed & Freedom

• Build and maintain loosely coupled components more independently,
and replace old components with new technologies without breaking
clients that depend upon them for services

– Guidance
• Clear definitions of responsibilities, answer "where should I put this

functionality" before even asked, simplify building of components and
layter understanding of these

– Reuse of Effort, Skills & Know-How
• Common design patterns, tools, hardware and software platforms

allow to move from one system to another, and apply their current
skills effectively

• The goal of reusable components is achievable

– Easy integration
• Applications built to a consistent architecture are more easily

integrated with each other

30.6.09 Copyright © Alar Raabe 200938

Value of Good Architecture (2)

• Owners & Maintainers
– Standards-based systems are more easily integrated with

external business partners and commercial "off the shelf"
products

– Careful design of the application and the infrastructure yield high
availability and performance

– Robust systems that can survive partial failure
– Robust designs that can survive extension, adaptation,

requirements changes, platform changes, etc.

30.6.09 Copyright © Alar Raabe 200839

Value of Modularity – Soft Value

• Maintainability
– the ease with which a software system or component can be

modified to change (flexibility) or add (extendability) capabilities,
correct faults or defects, improve performance or other
attributes, or adapt to a changed environment

• Portability
– the ease with which a system or component can be transferred

from one hardware or software environment to another

• Reliability
– the ability of a system or component to perform its required

functions under stated conditions for a specified period of time

• Testability

30.6.09 Copyright © Alar Raabe 200940

Measuring Value of Software
Architecture

• Value of Software Architecture
– cost of realization of risks comnpared to cost of architecture

• Value of Software Architecture Description
– cost of perfroming activities without architecture description

compared to cost of documenting architecture

valuearchdesc=∑
i=1

n

cost performingactivity i−cost archdesc

valuearch=∑
i=1

n

cost risk concerni−cost arch

30.6.09 Copyright © Alar Raabe 200841

Value of Modularity – Economic Value
1

• Real Option Theory [Baldwin & Clark]
– Modularity

• is a financial force
• accommodates future uncertainty
• creates choices that can be exercised in future

– Design Structure Matrix – dependency matrix of design
parameters

– Modular Operators – correspond to options
• split, substitute, exclude, augment (add), inversion, porting

– Valuation of modularity as Real Options (American call)
• Decision trees with probabilities (Markov Processes)
• Dynamic programming algorithms
• Monte Carlo simulations

– Value

NPVstrategic = NPVtraditional + Value real options

30.6.09 Copyright © Alar Raabe 200842

Value of Modularity – Economic Value
2

• Real Option Theory
– Qualitative Design Principles [Sullivan]

• If at any time, the expected value of future profits discounted to
given time is at least by value of investment opportunity more than
the direct costs, then commit to the design decision, otherwise do not

• If the expected present value of the future profits that would flow
from choice exceeds the direct cost of implementing it, then go
ahead and implement the choice, otherwise implement other choice

• If the expected present value of future profits that would flow from
restructuring exceeds the direct cost of restructuring, then go ahead
and restructure, otherwise do not

• If the cost to effect a software decision is sufficiently low, then the
benefit of investing to effect it immediately outweighs the benefit of
waiting, so the decision should be made immediately

• With other factors, including the static NPV, remaining the same, the
incentive to wait for better information before effecting a design
decision increases with risk (ie, with the spread, in possible benefits)

• The incentive to wait before investing increases with the likelihood of
unfavourable future events occurring

• All else being equal, the value of the option to delay increases with
variance in future costs

30.6.09 Copyright © Alar Raabe 200943

Discussion

30.6.09 Copyright © Alar Raabe 200944

What is/are for us ...

• Concepts of
– (Software) System
– (Software) Architecture
– (Software) Architecture Description

• Value of
– (Software) Architecture
– (Software) Architecture Description

• Most Relevant (Software) Architecture Styles
• Main Stakeholders
• Main System Concerns
• (Software) Architecture Framework
• (Software) Quality Attributes

30.6.09 Copyright © Alar Raabe 200945

Conclusion

• Value of (Software) Architecture
– as fundamental conception of (software) system, architecture

allows us to reason (answer questions) about the (software)
system

– as specific architectural styles address certain concerns (cause
certain properties/qualities) of (software) systems, architecture
allows us to address concerns (achieve required properties or
qualities) of (sofware) systems

• Value of Architecture Description
– as document, it provides guidance for constructing and evolving

the (software) system, and allows us to record and communicate
our knowledge and decisions about the (software) system
architecture

– as model, it allows us to reason (answer questions) about the
(software) system architecture

30.6.09 Copyright © Alar Raabe 200946

Leftovers

• Conway's law (1968)
– organizations which design systems are constrained to produce

designs which are copies of the communication structures of
these organizations

30.6.09 Copyright © Alar Raabe 200947

Thank You!

30.6.09 Copyright © Alar Raabe 200948

Terms (Glossary)

architecture

architecture decision

architecture description collection of work products used to describe an architecture
architecture model work product from which architecture views are composed
architecture rationale explanation or justification for an architecture decision
architecture view

architecture viewpoint

environment

model correspondence relation on two or more architecture models
stakeholder

purpose {one of system concerns}
system {a conceptual entity defined by its boundaries}
system concern

fundamental conception of a system in its environment embodied
in elements, their relationships to each other and to the
environment, and principles guiding system design and evolution
choice made from among possible options that addresses one or
more architecture-related concerns

work product representing a system from the perspective of
architecture-related concerns
work product establishing the conventions for the construction,
interpretation and use of architecture views
context determining the setting and circumstances of
developmental, technological, business, operational,
organizational, political, regulatory, social and any other
influences upon a system

individual, team, organization, or class thereof, having concerns
with respect to a system

area of interest in a system pertaining to developmental,
technological, business, operational, organizational, political,
regulatory, social, or other influences important to one or moreof
its stakeholders

ISO/IEC 42010:2007

30.6.09 Copyright © Alar Raabe 200949

Definitions
1

• System
– a collection of interacting components organized to accomplish a

specific function or set of functions within a specific environment

• Interface (Connection)
– a shared boundary between two functional units, defined by

various characteristics of the functions
– component that connects two or more other components for the

purpose of passing information from one to the other

• Module (Component)
– a logically separable part of a system

• Encapsulation
– isolating some parts of the system from the rest of the system
– a module has an outside that is distinct from its inside (an

external interface and an internal implementation)

30.6.09 Copyright © Alar Raabe 200950

Definitions
2

• Modularity
– the degree to which a system is composed of discrete

components such that a change to one component has minimal
impact on other components

– the extent to which a module is like a black box

• Coupling
– the manner and degree of interdependence between modules
– the strength of the relationships between modules
– a measure of how closely connected two modules are

• Cohesion
– the manner and degree to which the tasks performed by a single

module are related to one another
– a measure of the strength of association of the elements within a

module

30.6.09 Copyright © Alar Raabe 200951

Definitions
3

• Model
– an interpretation of a theory for which all the axioms of the

theory are true
– a semantically closed abstraction of a system or a complete

description of a system from a particular perspective
– anything that can be used to answer questions about system

• to an observer B, an object M
A
 is a model of an object A to the extent

that B can use M
A
 to answer questions that interest him about A

Marvin Minsky
• M is a model of A with respect to question set Q if and only if M may

be used to answer questions about A in Q within tolerance T
Doug Ross

30.6.09 Copyright © Ala Raabe 200852

Scenarios

4+1 Views (Kruchten)

Developmen View
(prgrammers)

● Software management

Logical View
(end-users)

● Functionality

Process View
(system integrators)

● Perfromance
● Scalability
● Throughput

Pysical View
(system engineers)

● System topology
● Delivery
● Installation
● Telecommunication

30.6.09 Copyright © Alar Raabe 200953

What is a (Software) Architectural Style

• Characterizes a family of systems that are related by
shared structural and semantic properties

• Defines
– a vocabulary of design elements
– design rules, or constraints (incl. topology)
– semantic interpretation
– analyses that can be performed on systems built in that style

• Classification of Architectural Styles
– Constituent Parts
– Control and Data Flows
– Interaction of Control and Data Flows
– Type of Reasoning

30.6.09 Copyright © Alar Raabe 200954

Architectural Design Decisions (1)

• Kinds of Architectural Design Decisions
– Existence Decisions (ontocrises)

• structural decisions
• behavioral decisions
• ban or non-existence decsisions (anticrises)

– Property Decisions (diacrises)
• constraints
• design rules
• guidelines

– Executive Decisions (pericrises)
• organizational decisions
• process decisions
• technology decisions
• tool decisions

Kruchten

30.6.09 Copyright © Alar Raabe 200955

Architectural Design Decisions (2)

• Attributes of Architectural Design Decision
– Epitome (the Decision itself)
– Rationale (“why”)
– Scope
– State

• 0: idea / obsolesced
• 1: rejected
• 2: tentative / challenged
• 3: decided
• 4: approved

– Author, Time-Stamp, History
– Categories (usability, security, ...)
– Cost
– Risk

Kruchten

30.6.09 Copyright © Alar Raabe 200956

Architectural Design Decisions (3)

• Relationship between Architectural Design Decisions
• Constrains
• Forbids (Excludes)
• Enables
• Subsumes
• Conflicts with (mutually excluding)
• Overrides
• Comprises (is made of, decomposes into)
• Is Bound to (strong)
• Is an Alternative to
• Is Related to (weak)
• Dependencies

• Relationship with External Artifacts
• Traces to
• Does not Comply with

Kruchten

30.6.09 Copyright © Ala Raabe 200857

Questions

• How & who is using design artifacts?
• How to measure the cost and value of design knowledge?
• Who wants to pay for documents?
• Who wants to pay for exploring of various design

alternatives?
• How tests are debugged?
• How to select architectural style?
• How to recover concepts?
• How to measure cost of having (or not having)

architecture?
• How to evaluate the goodness of a method?

