
ECSA 2010

Fourth European Conference on 
Software Architecture

IT University of Copenhagen, 
Denmark

23.-26.08.2010



30/08/10 Copyright © Ala Raabe 20102

Content

• Introduction

• Some things relevant to us
– Keynotes
– Some Papers
– 8th NW-MDE

• Conclusions



30/08/10 Copyright © Ala Raabe 20103

Introduction

• A series of European Workshops on Software Architecture 
started from 2004 (UK)
– Changed into Conference format from 2007 (Madrid)

• Content
– from 135 abstracts and 106 papers submitted
– 19 full research and 31 other shorter papers were accepted

• Keynotes
– Jan Bosch & Philippe Kruchten & Jim Webber

• This time joint event with 8th Nordic Workshop on Model 
Driven Software Engineering



30/08/10 Copyright © Ala Raabe 20104

Keynotes – Jan Bosch

• speed is the foundation of everything else
(efficiency is the by-product of speed)
– small (max. 3 persons) independent self-directed teams

• cost of overlapping work is less than cost of synchronization/planning
– continuous deployment – no release cycles

• anything anytime should be possible to add, not breaking the system
– software ecosystem – open platforms

• architecture must
– focus on simplicity (hide, platformize, automatisize)

• no options for developers!
• no versions of components – single version of everything!

– provide compositionality (move from integration to composition)
– minimize dependencies (decoupling of components & teams)
– ensure end-to-end quality and fight design erosion

• delightful products



30/08/10 Copyright © Ala Raabe 20105

Keynotes – Philippe Kruchten

• Knowledge is an asset
– Bacon: “Knowledge is power”

• Knowledge evaporates
– “intellectual capital has legs and it walks ...”
– use documentation, process and tools to fight knowledge loss

• Often architectural knowledge is tacit

• Knowledge management strategies
– codification (repository) – document and make available

• select only essential, for which there is real reader
– personalization (people) – know who knows!

• use incentives to make people sharing information



30/08/10 Copyright © Ala Raabe 20106

Keynotes – Jim Webber

• usual agile FUD toward enterprise-level tools, but some 
good advices

• don't absolve yourself from thinking!
– no to gut feeling – guts are for “food processing”, use your head!

• model and analyze before deciding
– build working models (they call these “spikes”)

• no alternatives were evaluated
• there is no need for queuing = with enough iron it worked without it

– measure continuously the limiting quality characteristic(s)

• always present large numbers!
– ~1 000 000 000 req/month = ~390 req/sec

(100 ÷ 1 000 TPS is considered medium)



30/08/10 Copyright © Ala Raabe 20107

Some Papers

• Customer Value in Architecture Decision Making
– What

• customer value links architecture decisions directly to the business 
goals

• customer value quantifies the value of architecture change in money
– How to use

• model customer business (in different segments) and
• analyze impact of architecture changes (quality improvements) on 

customer business
• make time-dependent architecture change scenarios and
• analyze impact of architecture change scenarios on customer 

business

• Impact Evaluation for Quality-Oriented Architecture 
Decisions regarding Evolvability
– plug-in and pipes&filters correspond mostly to evolvability
– blackboard (central DB!) has negative effect toward evolvability



30/08/10 Copyright © Ala Raabe 20108

Some Papers

• Linking Design Decisions to Design Models in MBSD
– Eclipse + QEDwiki (for architectural decisions)

• Lightweight and Continuous Architecture Software Quality 
Assurance using the aSQA Technique
– SEI quality attributes

• availability, perfromance, modifiability, testability, security, usability
– for each estimate (from 1-5): target, current, importance
– then calculate

– health = 5 – max(0, target – current)
– focus = [(6 – health) x importance/5]

• ... several ...
– run-time availability of system (architecture) description
– support for on-line replacement of components

• Independently Extensible Contexts
– support for unanticipated extensions
– network of objects describing the domain (context)



30/08/10 Copyright © Ala Raabe 20109

Some Papers

• Explaining Architectural Choices to Non-Architects
– use radial diagrams, for quality attributes, for comparing 

different alternatives
– let them decide (or let them believe that they decide)

• Experiences in Making Architectural Decisions during ...
– keep architectural description separate from requirements
– do decisions at right time (as risk management)
– decision classes:

• in form of structure
• in form of technique (how to make structures)
• in form of (essential) requirements – postpone/delegate decisions
• in form of process prescription (what to do)

– decisions need information
• always model and try things out before the decision

– link decisions to requirements



30/08/10 Copyright © Ala Raabe 201010

Some Papers

• Unifying Software Architecture with its Implementations
– design is lost in the code – programming languages don't have 

any constructs that correspond to design structures
– use code to describe the design

• naming conventions
• build systems (system models – maven)
• component models (Spring, OSGi, ...)
• metadata (Java annotations, Doxygen, ...)
• comments
• AOP

– architecture recovery is doomed, because the knowledge is not 
there – it has been thrown away



30/08/10 Copyright © Ala Raabe 201011

8th NW-MDSE Keynote

• Language abstractions are insufficient to express what 
platforms offer

• Great increase in computing power, but software is still 
made as 40 years ago

• Biggest driver of architecture is Conway's Law
– usually common domain expertise group is missing!

• Model-Driven Softare Development = Speed
– avoiding duplicate code
– hiding platform complexity
– reusing expertise

• When gaining power/speed we loose control
• Model-Driven Techniques create pressure to specify/define 

requirements



30/08/10 Copyright © Ala Raabe 201012

8th NW-MDSE

• Study of model usage (in car industry)
– process document-centric (required deliverables are documents)
– requirements are perceived as most important, but
– models require largest effort (61% vs 23%)

• same in pure MDD project (59%) than in non-MDD projects (61%)!
– models are not systematically reused (an one-time effort)

• Repository support for free form tools
– often company official modeling tools are not used

• many informal tools and notations are used instead
• information will be lost after project

– MS Office is highly available/accessible and often used as 
informal tool for modeling – model repository support is added

• Clone detection in Domain Models
– as models get bigger, problems will be different



30/08/10 Copyright © Ala Raabe 201013

Conclusions

• Speed – basis for everything else
– seek speed – efficiency follows

• Simplicity – fight with complexity everywhere
– hide, automatisize, remove options
– fight architecture erosion

• Decouple components, teams and organizations
– continuous independent deployment

• Manage Architectural Knowledge
– Personalize – communities of practice (incentives to share)
– Codify – document the essential/critical

• Ensure end-to-end quality – automatisize QA



30/08/10 Copyright © Ala Raabe 201014

Thank You!

Questions?



30/08/10 Copyright © Ala Raabe 201015

Conclusions from last time!

• Not Documenting, but Understanding

• Design is for Humans

• Problem Structure should define Solution Structure

• Ideal architect is objective
– he doesn't have any favorite techniques, and
– all he does, has rationale


