
Sustainable Architecture

A Short Introduction

Alar Raabe

28.2.12 Copyright © Alar Raabe 20122

Teemad

• Kas jätkusuutlik arhitektuur on võimalik

• Milline on vähim võimalik reeglite kogu arhitektuuri jätkusuutlikuse
tagamiseks ja mida see peaks reguleerima

• Kuidas tagada piisavalt kõrge ärijuhtkonna huvi (ja/või asjatundlikus)
ettevõtte arhitektuuri vastu (huvi otsuste pikaajaliste mõjude vastu)

• Kuidas ettevõttes toime tulla konsultantidega

28.2.12 Copyright © Alar Raabe 20123

Issues

• Is the sustainable architecture possible?

• Which is the smallest possible set of rules/principles that assure the
sustainability of architecture and what is should regulate?

• How to make (sufficiently high-level) management of the enterprise
interested (knowledgeable) of enterprise architecture (interested of
long-term effects of their decisions)?

• How to handle consultants in the enterprise?

28.2.12 Copyright © Alar Raabe 20124

Sustainability

• Let's look the opposite case – what makes an architecture (a
system) not sustainable

– large "technical debt" that is such change (corruption) of the original
architecture, that non-functional qualities of the system are significantly
reduced (for example modifiability)

– loss of architectural knowledge, causing the maintenance of the system to
become difficult or impossible

– change of the external environment in such extent that the architecture
doesn't allow the system to be adapted to this change

• Growth of the entropy (measure of disorder) in the systems is
unavoidable if tere is not a constant effort applied to reduce it

– that leads us to the requirement that in the sustainable architecture we
must have mechanisms to counteract the growth of entropy or even
reduce it

– sustainable architecture keeps the entropy (measure of disorder) of the
system constant or reduces it

sustainability (lat. sustinere) –
the capacity to endure (to hold up)

28.2.12 Copyright © Alar Raabe 20125

Emerged Architecture – Big Ball of Mud !

• Emerges from
– Throwaway code, Piecemeal growth, Keep-it-Working,
– Shearing layers, Sweeping it under the rug

• Forces corresponding to emergence
– Time – designing architecture takes time
– Cost – designed architecture costs and is long-time investment
– Experience and skill – designing architecture requires know-how
– Complexity and scale of the problems
– Change – predicting future change requires vision and courage
– Organization – architecture reflects organization (Conway’s law)

• Advantages – mostly business concerns !
– Quick to make  Time-to-Market
– Cheap to make  Cost vs. Benefit
– Does not need governance – just emerges
– Does not need skills

• Disadvantages – mostly IT concerns !
– Maintainability – difficult and costly to maintain
– Modifiability – hard and dangerous to change
– Testability – difficult to test

Complexity increases rapidly until
it reaches a level of complexity
just beyond that with which we
can comfortably cope

Cunningham

28.2.12 Copyright © Alar Raabe 20126

Different Architectures – Different Properties

Task 1

Task 2

UI

New Task 2.5

Scheduler

Task 3

DB

Task 1

Task 2

UI

New Task 2.5

Scheduler

Task 3

DB

adding new task

28.2.12 Copyright © Alar Raabe 20127

Different Architectures – Different Properties

Task 1

Task 2

UI

Generator

Task 3

DB

Task 1

Task 2

UI

Forecast Task

Task 3

DB

Temp DB

Task 1

Task 2

Task 3

Forecast Task

Generator

Task 1

Task 2

Task 3

adding forecasts of portfolio

28.2.12 Copyright © Alar Raabe 20128

Controlling the Architecture

• Use Conway's law

– enterprise organization should be designed such that we would like the enterpise IT
architecture to become

– there must always exist an interested party for developing certain architecture
feature/element (e.g. developing the architecture in certain way must be in
somebody's interest)

• Limit the resources in suitable manner would stimulate thinking and (as a
consequence) reduction of complexity, increase of reuse, and simplification of
maintenance

– that is architecture can be developed by the owner/steward of necessary resources

– in case we have a governance body for architecture like architecture committee, it
must own or command resources

• Ownership of main (architectural) principles by top management (they must
belong to the enterprise identity and value system)

– only then they will influence the architectural decisions;

Organizations which design systems are constrained
to produce designs which are copies of the
communication structures of these organizations

Conway (1968)

28.2.12 Copyright © Alar Raabe 20129

Controlling the Architecture

• Differentiat actions according to the governance model

– in the enterprises with strong central governance (power) it is possible to design the
architecture accordin to certain goals, and the result would be foreseeable

– but in the enterprises with weak central governance (power) or completely
decentralized enterprises it would only be possible to create favorable situation for
architecture to emerge and develop (grow), and the result would not be foreseeable
nor guaranteed

• Differentiate capital investments

– the part of the architecture, which function is most static (i.e. infrastructure/platform)
could afford the biggest capital investments – to stay long time without changes it
must perfrom very generic functions (as an opposite to the frequently changing
parts of the architecture which could perfrom very specific functions)

– the more variable/volatile is the function, the smaller should be the capital
investments

• Limit the amount of "technical debt" allowed for the IT architecture

– large technical debt limits the options of change and "takes over" control of the
architecture.

28.2.12 Copyright © Alar Raabe 201210

Sustainability Evaluation of Software Architectures
by Heiko Kozioleko (ABB)

• A software-intensive system is long-living if it must be operated for
more than 15 years

• A long-living software system is sustainable if it can be cost-eciently
maintained and evolved over its entire life-cycle

– the opposite of a sustainable software system is a longliving system that
cannot be adapted to changing requirements and environments due to
unjustiable costs or even technical infeasibility

– the architecture of a sustainable system may evolve during its life-cycle,
but the fulllment of customer requirements within timing, budget, and
quality constraints must be assured

• Sustainability
– comprises the attributes maintainability (i.e., analysability, stability,

testability, understandability), modiability, portability, and evolvability
– can be achieved through adherence to design principles (e.g., modularity,

separation of concerns, conceptual integrity) throughout the entire lifecycle

28.2.12 Copyright © Alar Raabe 201211

(Lean) Enterprise Principles
by Deborah Nightingale (MIT)

• Adopt a Holistic Approach to Enterprise Transformation

• Identify Relevant Stakeholders and Determine their Value Proposititons

• Focus on Enterprise Effectiveness before Efficiency

• Address Internal and External Enterprise Interdependencies

• Ensure Stability and Flow within and across the Enterprise

• Cultivate Leadership to Support and Drive Enterprise Behaviors

• Emphasize Organizational Learning

28.2.12 Copyright © Alar Raabe 201212

Entropy

• 3 Interpretations
– Irreversibility: engines produce unrecoverable heat

• The Arrow of Time: Closed systems entropy always increases as the
Universe’s

– Measure of the disorder: Kid’s room, engineer desk…
– Measure of ignorance: We are part of the system: Disorder prevents

understanding

• Entropy of an open system can increase or decrease
– At the expense of the surrounding system

• Information Entropy (Shannon)
– The minimum length of a message for a given meaning
– Affected by coding, noise, redundancy

– Could be generalized to measure the “effectiveness” of information
processing

28.2.12 Copyright © Alar Raabe 201213

Ten Signs of Enterprise Entropy

1. Most funded projects are fun to build, but do not directly support key business drivers

2. The quality improvement process has become so internalized that a high percentage of funded
projects are creating very high-quality redundant functions, data stores and interfaces

3. No one has noticed the linkage between the measurements used to indicate the overall health
and success of the organization — shareholder value, high quality/low error rates, customer
satisfaction — with the 22 inconsistent, overlapping customer data stores and the high level of
customer complaints about receiving duplicate mailings

4. To support "Buy Vs. Build," each Line of Business has purchased its own trouble-reporting
system — and server to host it

5. There is a governance process, but basically, any tall person with a loud voice can build a new
customer data store

6. There are at least several effective, well-managed work intake processes, with highly trained
project managers each tracking their own overlapping, competing projects

7. There is a formal Systems Development Methodology — somewhere…

8. The IT organization structure looks like a bad module design

9. When projects are late/over budget/irrelevant, there is usually stunned surprise (How could this
have happened?)

10. The corporate data model just celebrated year ten of its development, but the only cake-eaters
were the corporate data modelers…

28.2.12 Copyright © Alar Raabe 201214

Agile Enterprise

• Fred Brooks:

– All repairs tend to destroy the structure, to increase the entropy and disorder of the
system. Less and less effort is spent on fixing the original design flaws: more and
more is spent on fixing flaws introduced by earlier fixes.

• John Zachman:

– I have a feeling that the reason the whole enterprise has to embrace enterprise
architecture is because of entropy: the energy that enterprises have to spend just to
keep the system working rather than spending it on doing productive work. This is
the second law of thermodynamics: entropy increases over time.

– When the structure of the model supports the intent, when everything supports the
layer above it, then you get clarity and flexibility. You want real flexibility? You
separate the independent variables. You don’t get flexibility by increasing the
granularity. That does not make it flexible. Process must be separate from
inventory. Logic must be separate from technology. ... When you can change one
thing without touching the others, you have flexibility.

28.2.12 Copyright © Alar Raabe 201215

Thank You!

28.2.12 Copyright © Alar Raabe 201216

Architecture

• Merriam-Webster :: Architecture (n)
– art or science of building
– unifying or coherent form or structure
– manner in which the components of the system are organized and

integrated

• Wikipedia :: Architecture
(Greek: αρχιτεκτονική and Latin: architectura)

– 2011
• art and science of designing (buildings and other physical) structures
• style and method of design and construction of (buildings and other physical)

structures
• …

– 2009
• …
• as documentation, usually based on drawings, architecture defines the structure

and/or behavior of a system that is to be or has been constructed

Architecture is about:

 Durability (firmitas)
 Utility (utilitas)
 Beauty (venustas)

Vitruvius
(Rome, 1 BC)

28.2.12 Copyright © Alar Raabe 201217

What is System Architecture

• System Architecture is a
– fundamental conception of a system in its
– environment embodied in
– elements, their
– relationships to each other and to the environment, and
– principles guiding software system design and evolution

• System Architecture Description is a
– collection of related (corresponding) models, organized into cohesive groups of
– synthetic (constructed) or projective (derived) views, defined by viewpoints according to

the related set of concerns (in architecture framework)

• System Architecture Model is
– work product that can be used to answer questions about the system

• M. Minsky 1968: “to an observer B, an object A* is a model of an object A to the extent that B can use A*
to answer questions that interest him about A”

• IEEE SE VOCAB: an interpretation of a theory for which all the axioms of the theory are true, or a
semantically closed abstraction of a system or a complete description of a system from a particular
perspective

architecture is a model of system
and architecture description is a
model of architecture

28.2.12 Copyright © Alar Raabe 201218

Different Architecture Levels – Decision Scopes

• Enterprise Architecture – a holistic view on whole enterprise
– a description of the enterprise that provides a common understanding and a formal link

between strategic objectives and tactical execution

Enterprise Architecture Decisions

Domain Architecture Decisions

Solution
Architecture
Decisions

28.2.12 Copyright © Alar Raabe 201219

Measuring Value of Software Architecture

• Value of Software Architecture
– Cost of realization of risks compared to cost of architecture

• Value of Software Architecture Description
– Cost of performing activities without architecture description compared to cost of

documenting architecture

valuearch=∑
i=1

n

cost risk concerni  −costarch

valuearch .desc=∑
i=1

n

cost performing activity i  −cost arch. desc

Focus on quality and cost will decrease
Focus on costs and quality will decrease

W. E. Deming

28.2.12 Copyright © Alar Raabe 201220

Real Options for Valuation of Software Architecture

• Option is
– A right, but not obligation to make a decision in the future
– Difference from financial option (American call) – might be exercised multiple times

• Applicable when there is
– Uncertainty
– Business goal

• Uncertainty is important for managing or achieving a business goal
– New information

• New information should be exploited when it comes available
– Action today should create

• Possibility of future design choices
• Possibility of future value

• Strategic Value with Real Options

• Valuation of real options
– Decision trees with probabilities (Markov processes)
– Dynamic programming algorithms
– Monte Carlo simulations

NPV strategic=NPV traditionalValue real. options

28.2.12 Copyright © Alar Raabe 201221

Economic Value of Architecture Decisions

• Real Option Theory (Sullivan)
– Qualitative Design Principles

• If at any time, the NPV of future profits is at least by value of investment more than the direct
costs, then commit to the design decision, otherwise not

• If the expected PV of the future profits that would flow from choice exceeds the direct cost of
implementing it, then implement the choice, otherwise implement some other choice

• If the expected PV of future profits that would flow from restructuring exceeds the direct cost of
restructuring, then restructure, otherwise do not

• If the cost to effect a software decision is sufficiently low, then the benefit of investing to effect it
immediately outweighs the benefit of waiting, so the decision should be made immediately

• With other factors, including the static NPV, remaining the same, the incentive to wait for better
information before effecting a design decision increases with the risk (i.e. with the spread in
possible benefits)

• The incentive to wait before investing increases with the likelihood of unfavorable future events
occurring

• All else being equal, the value of the option to delay increases with variance in future costs

28.2.12 Copyright © Alar Raabe 201222

Terms (Glossary)

Term Definition

architecture fundamental conception of a system in its environment embodied in elements, their relationships to each other
and to the environment, and principles guiding system design and evolution

architecture decision choice made from among possible options that addresses one or more architecture-related concerns

architecture description collection of work products used to describe an architecture

architecture model work product from which architecture views are composed

architecture rationale explanation or justification for an architecture decision

architecture view work product representing a system from the perspective of architecture-related concerns

architecture viewpoint work product establishing the conventions for the construction, interpretation and use of architecture views

architecture-related concern area of interest in a system pertaining to developmental, technological, business, operational, organizational,
political, regulatory, social, or other influences important to one or more of its stakeholders

environment context determining the setting and circumstances of developmental, technological, business, operational,
organizational, political, regulatory, social and any other influences upon a system

model correspondence relation on two or more architecture models

stakeholder individual, team, organization, or class thereof, having concerns with respect to a system

purpose {one of system concerns}

system {a conceptual entity defined by its boundaries}

ISO/IEC 42010

28.2.12 Copyright © Alar Raabe 201223

Architectural Design Decisions

• Kinds of Architectural Design Decisions
– Existence Decisions (ontocrises)

• Structural decisions
• Behavioral decisions
• Ban or non-existence decisions (anticrises)

– Property Decisions (diacrises)
• Constraints
• Design rules
• Guidelines

– Executive Decisions (pericrises)
• Organizational decisions
• Process decisions
• Technology decisions
• Tool decisions

• Attributes of Architectural Design Decisions
– Epitome (the Decision itself)
– Rationale (“why”)
– Scope
– State (idea, rejected, tentative/challenged,

decided, approved)
– Author, Time-Stamp, History
– Categories (usability, security, …)
– Cost
– Risk

• Relationships between Architectural Design
Decisions

– Constraints
– Forbids (Excludes)
– Enables
– Subsumes
– Conflicts with (mutually excluding)
– Overrides
– Comprises (is made of, decomposes into)
– Is bound to (strong)
– Is an alternative to
– Is related to (weak)
– Dependencies

• Relationship with External Artifacts
– Traces to
– Does not comply with

