
Software (Systems)
Architecture Foundations

Lecture #1

Introduction

Alar Raabe

4.6.18 Copyright © Alar Raabe 20182

Alar Raabe

• Nearly 40 years in IT
– held various roles from programmer to a software architect and to enterprise

business architect

• 15 years in insurance and last 10 years in banking domain
– developed model-driven technology for insurance applications product-line (incl.

models, method/process, platform/framework and tools)
– developing/implementing business architecture framework and methods for a

banking group

• Interests
– software engineering (tools and technologies)
– software architectures
– model-driven software development
– industry reference models (e.g. IBM IAA, IFW, ...)
– domain specific languages

4.6.18 Copyright © Alar Raabe 20183

Course Purpose

• Purpose – to provide understanding of
– the core concepts in the discipline of software (systems) architecture
– overview of different architecture styles
– how software architecture affects quality attributes of the software systems
– the value of software architecture and the architecture decisions

• Results
– General understanding of the related concepts and techniques

– Basic skills to
• describe the architecture of software systems
• evaluate the architecture of software systems
• reason upon architectural decisions
• organize the architecture work and governance

4.6.18 Copyright © Alar Raabe 20184

How we Work

• Weeks #09 ÷ #16
– Monday 16:00-17:30 lecture (room EIK 221)
– Tuesday 16:00-17:30 practice (room EIK 221)

• Practical work – happens in teams
– Each team selects a software system, and

• Designs architecture for it (studying the alternatives and selecting best)
• Describes the architecture from selected viewpoints (to support stakeholders)
• Analyses the architecture for selected quality attributes (ensuring that these will be met)
• Presents their architecture with reasoning and analysis results (in written form)

• Evaluation
– Presentation and defense of description and analysis of the architecture of the

selected software system, done during practical work and off classes

4.6.18 Copyright © Alar Raabe 20185

Course Content
Lecture Practical Work

1 Software (Systems) Architecture
what we call as architecture, how we speak of it and why
architecture matters (that is why we need to design it)

distribution of subjects
context of system
stakeholders and their concerns

2 Architecture Styles
what is architecture style, classification and analysis of main
architecture styles, derived (complex) architecture styles,
designing an architecture style (REST)

alternative system architectures

3 Documenting Software Architectures
stakeholders, viewpoints and views, architecture decisions,
architecture description languages, architecture in code

selecting viewpoints and views

4 Evaluating Architectures
software quality attributes, evaluation of architectures (ATAM,
CBAM, ...), cost and value of architecture decisions

important quality attributes
selecting evaluation scenarios
evaluating alternative architectures

5 Larger Context
Systems-of-systems, architecture levels, enterprise
architecture, enterprise architecture frameworks (TOGAF)
(industry) reference architectures (BIAN)

selecting best architecture
elaborating and documenting architecture

6 From one System to Many
product-line architectures, model-driven development

supporting the systems family
elaborating and documenting architecture

7 Role of Architect
role of architect, architecture work and governance,
architecture in the context of agile development

architecture function of an enterprise
presentations of group-work

8 (Boldly) to the Future
architecting for cloud, adaptive systems, AI systems & neural
networks

presentations of group-work

4.6.18 Copyright © Alar Raabe 20186

Subjects for Practical Work

1. Cloud-ready product/agreement management system (i.e. ledger) for
financial services industry

2. Software for mobile (smart-)phone

3. Automatic (intelligent) financial trading system

4. Fire control system for mobile (land or maritime) vehicle

5. Customer relationship management system with AI

6. Flight control (fly-by-wire) software for drone

7. Software for network of autonomous sensors (based of IoT)

8. Fault-tolerant and secure communication (chat) system

9. VR/AR role-playing or action game

10.Software for package delivery robot

• … or your own proposal ? ...

4.6.18 Copyright © Alar Raabe 20187

(Some) Sources

[1] Mary Shaw, David Garlan, Software Architecture, Perspectives on an
Emerging Discipline, Prentice Hall,1996

[2] Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, 2nd
ed., Addison-Wesley, 2003

[3] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, Judith Stafford, Documenting Software Architectures,
Views and Beyond, Addison-Wesley, 2003

[4] PaulClements, Rick Kazman, Mark Klein, Evaluating Software Architectures,
Methods and Case Studies, Addison-Wesley, 2001

[5] R. T. Fielding, Architectural Styles and the Design of Network-based
Software Architectures, UCI, 2000

[6] ISO/IEC/IEEE 42010, Systems and software engineering — Architecture
description (IEEE 1471)

[7] Open Group, TOGAF 9

[8] Open Group, ArchiMate 3

● … Google “Software Architecture” ...

4.6.18 Copyright © Alar Raabe 20188

Content

• Intro to the Software (Systems) Architecture
– What we call Architecture
– Why we need to bother with Architecture
– Design vs. Architecture
– Early Views and Software Architecture

• Software Architecture (Description) related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

• Other related Concepts
– Abstraction

– Complexity
– Modularity
– Model

• Conclusions

Software architecture is what
software architects do

Kent Beck

Software architecture is what
software architects do

Kent Beck

4.6.18 Copyright © Alar Raabe 20189

What we call Architecture

• Merriam-Webster :: Architecture (n)

– art or science of building

– unifying or coherent form or structure

– manner in which the components of the system are organized and integrated

• Wikipedia :: Systems Architecture
– the conceptual model that defines the structure, behavior, and more

views of a system

• Wikipedia :: Software Architecture

– refers to the high level structures of a software system, the discipline
of creating such structures, and the documentation of these structures

Architecture is about:

 Durability (firmitas)
 Utility (utilitas)
 Beauty (venustas)

Marcus Vitruvius Pollio
(Rome, 1st century BC)

Architecture is about:

 Durability (firmitas)
 Utility (utilitas)
 Beauty (venustas)

Marcus Vitruvius Pollio
(Rome, 1st century BC)

4.6.18 Copyright © Alar Raabe 201810

Building Architecture

• Parts or Components or Elements
– Walls, roofs, …
– Doors, windows, …
– ...

• Connections or Relationships
– On top of, inside of
– ...

• Principles or Rules
– Transfer weight to ground

– Replace tension with
compression

– ...

Pictures © Wikipedia & Wikimedia Commons

4.6.18 Copyright © Alar Raabe 201811

Business Architecture

• Parts or Components or Elements
– Value propositions, customer segments, ...
– Key activities, key resources, …
– ...

• Relationships
– Channels, …
– Customer relationships,

supplier relationships, …
– ...

• Rules
– Income should cover costs
– ...

Pictures © Business Model Toolbox

4.6.18 Copyright © Alar Raabe 201812

Software Architecture

• Parts or Components
or Elements

– Processors

– Data-stores
– …

• Relationships
– Data channels, Control channels
– Interfaces
– …

• Rules
– Stateless servers
– ...

Source Filter 0

Filter 1

Filter 2

Sink 1

Sink 2

Filter 3

Filter 31 Filter 32

Fork

Knowledge
Source 1

Knowledge
Source 2

Knowledge
Source 4

Knowledge
Source 5

Moderator

Knowledge
Source 6

Knowledge
Source 3

Blackboard

Service User 1 Service User 2

Service
Provider 1

Service
Provider 2

Service
Provider 3

Service User 3

Service
DirectoryService Bus (Broker)

Origin Server 1Server

User Agent 3 Client

User Agent 1 Proxy 1

User Agent 2

Client

Client

Server Cache Client

Origin Server 2ServerGateway 1

Server Client

Origin Server 3Server

4.6.18 Copyright © Alar Raabe 201813

Two kinds of stools

What's the difference ?
How many legs is good ?

What's the difference ?
How many legs is good ?

4.6.18 Copyright © Alar Raabe 201814

Two kinds of web applications

User Interface +
Business Logic

Database
System

How many layers/tiers is good ?
What's the difference ?
During runtime or coding?

How many layers/tiers is good ?
What's the difference ?
During runtime or coding?

User Interface

Business Logic

Database
System

4.6.18 Copyright © Alar Raabe 201815

Two kinds of smart-phones

Application
Processor
(CPU)

RAM

RAM

Digital
Baseband
Processor
(Radio)

Application
Processor
(CPU)

RAM

Digital
Baseband
Processor
(Radio)

Do you know which one is yours ?
Do you care or should you care ?
Who cares which one is used ?

Do you know which one is yours ?
Do you care or should you care ?
Who cares which one is used ?

4.6.18 Copyright © Alar Raabe 201816

Emerging Architecture

Pictures © Wikipedia & Wikimedia Commons

Which one you would like to live in ?Which one you would like to live in ?

4.6.18 Copyright © Alar Raabe 201817

Why we need to bother with Architecture ...

• Architecture is the carrier of certain properties of the system

– Same function, but different architecture → different properties / qualities

• But architecture with desirable properties doesn't emerge itself, it needs to
be designed

– Designing the architecture allows to reach certain, desirable, properties

– Knowing the architecture allows to reason about some of the properties of
the system, and foresee those properties (without building and testing the actual
system)

4.6.18 Copyright © Alar Raabe 201818

Design vs. Architecture

• Design = Plan
– adaptation of means (what we have) to ends (what we want)

• Software Design can be viewed on many levels
– design of higher levels is architecture for the lower levels

• G. Booch
– architecture represents significant design decisions that shape a system, where

significant is measured by cost of change

• A. H. Eden
– Architectural decisions and specifications are

• Intensional
(generic → applicable to many implementations)

• Non-local
(applicable to entire system)

All architecture is design but not
all design is architecture

Grady Booch

All architecture is design but not
all design is architecture

Grady Booch

The Intension / Locality Thesis

Non-Local Intensional Architecture

Local Intensional Design

Local Extensional Implementation

4.6.18 Copyright © Alar Raabe 201819

Early Views on Software Architecture

• Ada Augusta, Countess of Lovelace (1842)
– described the idea of a set of reusable instructions for Analytical Engine

• A. M. Turing & D. Wheeler (1946-50)
– reuse of program code and modularization – (closed) subroutine
– subroutine library (reusability, reliability, unit testing (testability), multiple versions

with different non-functional qualities, …)

• K. E. Iverson, M. E. Conway & F. Brooks (1964-69)
– architecture is a conceptual structure
– system (architecture) design follows organization → Conway’s Law
– architecture is the complete and detailed specification of the user interface (!)

• E. W. Dijkstra, D. L. Parnas & M. A. Jackson (1972-76)
– separation of concerns – isolation, encapsulation, modularization
– program families can be described by a decision trees
– structure influences non-functional ‘qualities’ of system
– structure of program is defined by domain structures

Reuse & Appearance
Structure Matters

Reuse & Appearance
Structure Matters

4.6.18 Copyright © Alar Raabe 201820

Decomposition Criteria

• Differences between the systems depend on
how they are divided into modules

– Systems can differ substantially even the runnable representation is same, because
other representations are used for changing, documenting, understanding, etc.

– Properties that vary depending on decomposition
• Changeability
• Independent development
• Comprehensibility
• Efficiency (of implementation)

• Criteria used to get systems with different properties
– “major steps” (of algorithm)
– “information hiding”
– hierarchical structure

• Begin with a list of difficult design decisions or design decisions which are likely to
change and design each module to hide such a decision from the others

Begin with a list of difficult design
decisions or design decisions which
are likely to change

D. L. Parnas (1971)

Begin with a list of difficult design
decisions or design decisions which
are likely to change

D. L. Parnas (1971)

4.6.18 Copyright © Alar Raabe 201821

Jackson Structured Programming (JSP)
and System Development (JSD)

• Program structure should be dictated by the structure of its input and output data streams
(Jackson 1975)

• Development must begin by describing and modeling the real world, not by specifying,
describing or structuring the function which the system is to perform → a system
developed according to the JSD method embodies an explicit simulation of the real world
(Jackson 1981)

Domain Structures define
Software Architecture

Domain Structures define
Software Architecture

Pictures © Michael Jackson

4.6.18 Copyright © Alar Raabe 201822

Software Architecture as Discipline

• D. E. Perry & A. L. Wolf (1992)
– Software Architecture = { Elements, Form, Rationale }

• a set of architectural (or, if you will, design) elements that have a particular form
(of three different classes: processing, data, and connecting elements),

• architectural form, consisting of weighted properties and relationships, and
• rationale for various choices made in defining an architecture

• D. Garlan & M. Shaw (1994)
– a collection of computational components – or simply components – together

with a description of the interactions between these components – the
connectors

• L. Bass, P. Clements, R. Kazman (1997)
– the structure or structures of the system (comprise software components, their

externally visible properties, and the relationships among them)

• A. H. Eden, R. Kazman (2003)
– strategic design decisions/statements – global design decisions/constraints

elements + form/structure + rationale/principles
 (what) (how) (why)
elements + form/structure + rationale/principles
 (what) (how) (why)

4.6.18 Copyright © Alar Raabe 201823

Agile and Software Architecture

• K. Beck (2000)
– expressed in XP through system metaphor, which “helps everyone to

understand basic elements and their relationships”
– should be created by first iteration

• R. Johnson (2002)
– a shared understanding of the system design of the expert developers

working on the project (incl. how the system is divided into components and
how the components interact through interfaces)

– the decisions that you wish you could get right early in a project

• M. Fowler (2003)
– a word we use when we want to talk about design but want to puff it up to make

it sound important
– things that people perceive as hard to change → if everything is simple to

change there’s no architecture!

Architecture is the important
stuff – whatever that is

Ralph Johnson

Architecture is the important
stuff – whatever that is

Ralph Johnson

4.6.18 Copyright © Alar Raabe 201824

CMU SEI Software ArchitectureCMU SEI Software Architecture

Software Architecture – a Set of Structures

• The software architecture of a system is the set of structures needed to reason
about the system, which comprise software elements, relations among them, and
properties of both

– Architecture is a Set of Software Structures
• Software systems are composed of many structures, and no single structure holds claim to

being the architecture

– Architecture is an Abstraction
• Architecture specifically omits certain information – selects certain details and suppresses

others

– Every software system has a Software Architecture
• Even though every system has an architecture, it does not necessarily follow that the

architecture is known to anyone

– Architecture includes Behavior
• The behavior of each element is part of the architecture insofar as that behavior can be used to

reason about the system, and embodies how elements interact with each other

– Not all architectures are Good Architectures
• This raises the importance of architecture design, which is, and architecture evaluation

4.6.18 Copyright © Alar Raabe 201825

Three Kinds of Architecture Structures

• Module structures – embody decisions as to how the system is to be
structured as a set of code or data units that have to be constructed or procured

– Represent a static way of considering the system (independent of how the resulting
software manifests itself at runtime)

– Modules are assigned areas of functional responsibility

• Component-and-connector structures – embody decisions as to how the
system is to be structured as a set of elements that have runtime behavior
(components) and interactions (connectors)

– Components are the principal units of computation
– Connectors, which are the communication vehicles among components

• Allocation structures – embody decisions as to how the system will relate to
non-software structures in its environment

– These structures show the relationship between the software elements and elements
in one or more external environments in which the software is created and executed

CMU SEI Software ArchitectureCMU SEI Software Architecture

4.6.18 Copyright © Alar Raabe 201826

Importance of Architecture

• Architecture defines
– the earliest and most fundamental (hardest-to-change) design decisions

– a set of constraints on implementation

– system's quality attributes

• Architecture
– dictates the structure of an organization (that is building the system), or vice versa

– reduces design and system complexity (by restricting design alternatives and channeling
creativity)

– focuses attention on the assembly of components, rather than simply on their creation

– can be a transferable, reusable model that forms the heart of a family of systems (product line)

• Architecture description
– allows to reason and predict of system's qualities

– allows to reason about, and manage the change as the system evolves

– allows to reason about cost and schedule – supports project management

– enhances communication among stakeholders – provides common understanding of the system

– can be the foundation for training a new team member

CMU SEI Software ArchitectureCMU SEI Software Architecture

4.6.18 Copyright © Alar Raabe 201827

Software Architecture (in) Standards

• Open Group TOGAF 9 Enterprise Architecture Framework
– a formal description of a system, or a detailed plan of the system at component

level to guide its implementation
– the structure of components, their interrelationships, and the principles and

guidelines governing their design and evolution over time

• IEEE 1741 | ISO/IEC 42010 Systems and Software Engineering –
Architecture Description

– the fundamental conception of a system in its environment embodied in
elements, their relationships to each other and to the environment, and
principles guiding system design and evolution

– Architecture descriptions are for …
• Communicating among the system’s stakeholders
• Planning and Managing system development and operations
• Evaluating and Comparing systems architectures, and verifying system’s implementation

for compliance with its intended architecture

architecture ≠ architecture description

4.6.18 Copyright © Alar Raabe 201828

Content

• Intro to the Software (Systems) Architecture
– What we call Architecture
– Why we need to bother with Architecture
– Design vs. Architecture
– Early Views and Software Architecture

• Software Architecture (Description) related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

• Other related Concepts
– Abstraction

– Complexity
– Modularity
– Model

• Conclusions

Software architecture is what
software architects do

Kent Beck

Software architecture is what
software architects do

Kent Beck

4.6.18 Copyright © Alar Raabe 201829

System, Architecture and Architecture Description

ISO/IEC 42010ISO/IEC 42010

Every system has
an architecture !

Pictures © ISO/IEC/IEE

4.6.18 Copyright © Alar Raabe 201830

System, Architecture and Environment

ISO/IEC 42010ISO/IEC 42010

• There are Systems and they are situated in their Environment (which
could include other Systems)

• System
– is used as a placeholder – it could refer to an enterprise, a system of systems, a

product line, a service, a subsystem, or software
– systems can be man-made or natural

• Environment
– intended in the widest possible sense to include developmental, operational,

technical, political, regulatory, and all other influences which can affect the
architecture

• Stakeholders have interests in a System, called Concerns
(one, very common of these, is considered as system’s Purpose)

4.6.18 Copyright © Alar Raabe 201831

Examples of Stakeholders & Concerns

ISO/IEC 42010ISO/IEC 42010

• Stakeholders
– users and operators
– acquirers and owners
– suppliers, developers, builders and maintainers

• Concerns
– purposes of the system

– suitability of the architecture for achieving the system’s purposes (and other
stakeholders needs, goals and expectations)

– feasibility of constructing the system
– potential risks of the system to its stakeholders throughout its life cycle
– maintainability, deployability, and evolvability of the system
– compliance of system to design and other constraints

4.6.18 Copyright © Alar Raabe 201832

Architecture and Architecture Description

ISO/IEC 42010ISO/IEC 42010

• Systems have Architectures which are expressed by an Architecture
Description

• Architecture
– fundamental concepts or properties of a system in its environment embodied in its

elements, relationships, and in the principles of its design and evolution
• the architecture of X is what is fundamental to X (independent of what X is)
• a system can have an architecture even if that architecture is not written down

• Architecture Description
– a work product used to express the Architecture of some System Of Interest

– it describes one possible Architecture for a System Of Interest

– it may take the form of a document, a set of models, a model repository, or some
other form

– an artifact that expresses Architecture so that architects and other system stakeholders
can understand, analyze and compare Architectures, and can be used as “blueprint” for
planning and construction

4.6.18 Copyright © Alar Raabe 201833

Architecture Description – a set of Views

ISO/IEC 42010ISO/IEC 42010

Pictures © ISO/IEC/IEE

4.6.18 Copyright © Alar Raabe 201834

Stakeholder, Architecture View & Model

• Stakeholder
– individuals, groups or organizations holding Concerns for the System of Interest

• Architecture View
– expresses the Architecture of the System of Interest from the perspective of

one or more Stakeholders to address specific Concerns, using the conventions
established by its Viewpoint

– consists of one or more Architecture Models

• Architecture Model
– is constructed in accordance with the conventions established by its Model Kind,

typically defined as part of its governing viewpoint
– it provides a means for sharing details between views and for the use of multiple

notations within a view

ISO/IEC 42010ISO/IEC 42010

4.6.18 Copyright © Alar Raabe 201835

Architecture Viewpoint & Model Kind

• Architecture Viewpoint
– a set of conventions for constructing, interpreting, using and analyzing one type

of Architecture View
– it includes Model Kinds, viewpoint languages and notations, modeling methods

and analytic techniques to frame a specific set of Concerns (e.g. operational,
systems, technical, logical, deployment, process, information)

• Model Kind
– defines the conventions for one type of Architecture Model

• Correspondence
– express a relation between the elements of Architecture Description

ISO/IEC 42010ISO/IEC 42010

4.6.18 Copyright © Alar Raabe 201836

Architecture Decisions

• An Architecture Decision affects elements of Architecture Description and pertains
to one or more Concerns

– by making an Architecture Decision, new Concerns may be raised

• Architecture Rationale
– records the explanation, justification or reasoning about Architecture Decisions that have

been made and architectural alternatives not chosen

ISO/IEC 42010ISO/IEC 42010

Pictures © ISO/IEC/IEE

4.6.18 Copyright © Alar Raabe 201837

Architecture Decisions are Decisions ...

• regarding architecturally significant requirements

• needing a major investment of effort or time to make, implement or enforce

• affecting key stakeholders or a number of stakeholders

• necessitating intricate or non-obvious reasoning

• that are highly sensitive to changes

• that could be costly to change

• forming a base for project planning and management (e.g. work breakdown
structure creation, quality gate tracking)

• resulting in capital expenditures or indirect costs

ISO/IEC 42010ISO/IEC 42010

Pictures © ISO/IEC/IEE

4.6.18 Copyright © Alar Raabe 201838

Architecture Framework – a set of Viewpoints

• Architecture Framework
– establishes a common practice for creating, interpreting, analyzing and using architecture

descriptions within a particular domain of application or stakeholder community

ISO/IEC 42010ISO/IEC 42010

Pictures © ISO/IEC/IEE

4.6.18 Copyright © Alar Raabe 201839

Architecture Frameworks – ways to Look at Systems

System

4.6.18 Copyright © Alar Raabe 201840

Sensor Collection Service
Architecture Description

• Purpose (of the System)
– Subscription-based service of providing access to a widely-distributed set of sensors

• Stakeholders
– Users, developers, operators

• Architecture-related Concerns (by Stakeholders)
– ROI (operators)
– Timely delivery of sensor data (users)
– Understanding of interactions between system elements (developers)

• Viewpoints (by Architecture-related Concerns)
– Financial: cash-flow spreadsheet (ROI)
– Operational: time-line diagram (timely delivery of sensor data)
– System: system component diagram (understanding of interactions between system elements)

• View Consistency and Correspondence Rules
– Each node in component diagram should appear at least once in time-line diagram

• Views (by Viewpoints)
– Profit spreadsheet & profitability curve (cash-flow spreadsheet)
– Time-line diagram (time-line diagram)
– Data-flow diagram (system component diagram)

Example

ISO/IEC 42010ISO/IEC 42010

4.6.18 Copyright © Alar Raabe 201841

Content

• Intro to the Software (Systems) Architecture
– What we call Architecture
– Why we need to bother with Architecture
– Design vs. Architecture
– Early Views and Software Architecture

• Software Architecture (Description) related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

• Other related Concepts
– Abstraction

– Complexity
– Modularity
– Model

• Conclusions

Software architecture is what
software architects do

Kent Beck

Software architecture is what
software architects do

Kent Beck

4.6.18 Copyright © Alar Raabe 201842

Abstraction

• Abstraction
– process of generalization by reducing

the information content of a concept or
an observable phenomenon, selecting
only the aspects which are relevant for a particular purpose

– process of suppressing irrelevant details

• Abstraction is a technique for managing complexity

• In software development abstraction can apply to control or to data
– Control abstraction involves the use of subroutines and control flow abstractions
– Data abstraction allows handling pieces of data in meaningful ways

• The notion of an object in object-oriented programming can be viewed as a
way to combine abstractions of data and code

The essence of abstractions is preserving
information that is relevant in a given
context, and forgetting information that is
irrelevant in that context.

John V. Guttag

The essence of abstractions is preserving
information that is relevant in a given
context, and forgetting information that is
irrelevant in that context.

John V. Guttag

4.6.18 Copyright © Alar Raabe 201843

Complexity

• Complexity
– degree to which a system's design or

implementation is difficult to understand
and verify

because of numerous components, numerous relationships among components and
multiple ways that components can interact

• Complex systems are intrinsically difficult to model, and have distinct properties,
such as non-linearity, emergence, spontaneous order, adaptation, feedback
loops, ...

• Main source of complexity is the irreversibility of decisions (E. Zaninotto)
– if you can easily change your decisions, it's less important to get them right
– the consequence for evolutionary design is that designers need to think about how

they can avoid irreversibility in their decisions
– it's worth doing experiments to see how hard future changes can be, even if you don't

actually make the real change now

Software is not limited by physics, it is limited
by imagination, by design, by organization – it
is limited by properties of people, not by
properties of the world.
“We have met the enemy, and he is us.”

R. Johnson

Software is not limited by physics, it is limited
by imagination, by design, by organization – it
is limited by properties of people, not by
properties of the world.
“We have met the enemy, and he is us.”

R. Johnson

4.6.18 Copyright © Alar Raabe 201844

Modularity

• Modularity
– degree to which a system's components

may be separated and recombined
with minimal impact on other components

• Purpose of Modularization
– to make complexity manageable
– to enable parallel work
– to accommodate future uncertainty

• Modularizing a system involves specifying
– its architecture, that is, what its modules are
– specifying its interfaces, i.e., how the modules interact

– tests which establish that the modules will work together and how well each
module performs its job

Modularity creates design options:

• taking more risk creates more value

• redundant efforts may be value-increasing

• designs becomes “tolerant of uncertainty”

Carliss Baldwin & Kim Clark

Modularity creates design options:

• taking more risk creates more value

• redundant efforts may be value-increasing

• designs becomes “tolerant of uncertainty”

Carliss Baldwin & Kim Clark

4.6.18 Copyright © Alar Raabe 201845

Some more Concepts related to Modularity

• Encapsulation
– isolating some parts of the system from the rest of the system
– a module has an outside that is distinct from its inside (an external interface and

an internal implementation)

• Coupling
– the manner and degree of interdependence between modules
– the strength of the relationships between modules
– a measure of how closely connected two modules are

• Cohesion
– the manner and degree to which the tasks performed by a single module are

related to one another (the degree of functional relatedness of processing
elements within a single module)

– a measure of the strength of association of the elements within a module

Strong cohesion and low coupling
are the attributes of good design
(produce a stable structure)

E. Yourdon, L. L. Constantine

Strong cohesion and low coupling
are the attributes of good design
(produce a stable structure)

E. Yourdon, L. L. Constantine

4.6.18 Copyright © Alar Raabe 200846

System CSystem B

Overall Complexity

• Using modules to balance between system and modules volume/complexity

System A

Example

4.6.18 Copyright © Alar Raabe 200847

Measuring Complexity

• Counting elements of source
– LOC (count of all the code lines) & SLOC (number of executable code lines)

• Counting elements of architecture
– Cyclomatic Complexity (T. J. McCabe, 1976) measuring the complexity of a structure

(number of linearly independent paths through the structure)
– OO Metrics (Chidamber & Kemerer) measuring the coupling, cohesion, depth of

inheritance structures, etc.
– Software Science (M. H. Halstead, 1977) measuring number of unique or distinct

operators and operands and total usage of all the operators and operands to estimate
the volume, intelligence content (complexity), etc.

– Function Point (A. J. Albrecht, 1979, IFPUG) measuring data elements and queries to
estimate functional size of system

• Calculating entropy
– Entropy (E. B. Allen) calculating the information (average number of bits) needed to

describe the interconnections
– Source Code Entropy (O. Panchenko, S. H. Mueller, A. Zeier) calculating the

information contained in source code

4.6.18 Copyright © Alar Raabe 200948

Model – a Tool for Thinking

• Model is
– a representation that suppresses certain aspects of the modeled subject
– a representation of a system of interest, from the perspective of a related set of

concerns – a complete description of a system from a particular perspective
– a formal theory (a body of knowledge) about modeled subject

• Model is

anything that can be used to answer questions about the system

– Marvin Minsky
• to an observer B, an object M is a model of an object A to the extent that B can use M

to answer questions that interest him about A

– Doug Ross
• M is a model of A with respect to question set Q if and only if M may be used to

answer questions about A in Q within tolerance T

architecture description is a
model of architecture

architecture description is a
model of architecture

4.6.18 Copyright © Alar Raabe 200949

Legend

C

B

A

Examples of Models

ID Group Name Parent ...

1 A aa - ab

2 A ab - aa

3 B ba aa

4 B bb aa

5 B bc aa

6 C ca bc

aa ab

ba bb bc

ca

xx

X

Picture © Rabobank & BIAN

(Executable)
Model

Input

Output

Anything that can be used to answer
questions about the system

Anything that can be used to answer
questions about the system

4.6.18 Copyright © Alar Raabe 200950

Properties of a Good Model

• Complete
– in respect of particular property all questions can be answered with the model
– model represents all the semantically correct statements about the subject

• Consistent
– contains no conflicts/contradictions, i.e. is gives no conflicting answers

• Correct
– relative to modeled subject – all answers that are produced by the model, are true for the subject
– relative to modeling language – is not violating any rules and conventions

• Comprehensible
– understandable for intended users (also machine readable)
– there is correspondence between model elements and elements of subject (traceable)

• Confined – without unnecessary information

Good model is easy to make,
use and gives right answers

Good model is easy to make,
use and gives right answers

4.6.18 Copyright © Alar Raabe 201851

Content

• Intro to the Software (Systems) Architecture
– What we call Architecture
– Why we need to bother with Architecture
– Design vs. Architecture
– Early Views and Software Architecture

• Software Architecture (Description) related Concepts and Terminology
(IEEE 1741 | ISO/IEC 42010)

• Other related Concepts
– Abstraction

– Complexity
– Modularity
– Model

• Conclusions

Software architecture is what
software architects do

Kent Beck

Software architecture is what
software architects do

Kent Beck

4.6.18 Copyright © Alar Raabe 201852

Conclusions

• Software Architecture is a
– fundamental conception of a software system in its
– environment embodied in
– elements, their
– relationships to each other and to the environment, and
– principles guiding software system design and evolution

• Software Architecture Description is a
– collection of related (corresponding) models, organized into cohesive groups of
– synthetic (constructed) or projective (derived) views, defined by viewpoints

according to the related set of concerns (defined in architecture framework)

• Software Architecture Model is a
– work product that can be used to answer questions about the software system

Architecture is the important
stuff – whatever that is

Ralph Johnson

Architecture is the important
stuff – whatever that is

Ralph Johnson

4.6.18 Copyright © Alar Raabe 201853

Conclusions

• Although every software system has an architecture, but architecture with desirable
properties doesn't emerge itself, it needs to be designed

• Value of Software Systems Architecture

– As a cause of certain properties of software systems, designing architecture allows us to
address concerns and to achieve required and desirable properties of software systems

– As fundamental conception of software system, architecture allows us to reason (i.e. answer
questions) about the software system and its properties, and foresee those properties
beforehand (without building and testing the actual system)

• Value of Software Systems Architecture Description

– As a document, it provides guidance for constructing and evolving the software system, and
allows us to record and communicate our knowledge and decisions about the software
system architecture

– As a model, it allows us to reason (answer questions) about the software system architecture

All architecture is design but
not all design is architecture

Grady Booch

All architecture is design but
not all design is architecture

Grady Booch

4.6.18 Copyright © Alar Raabe 201854

Thank You!

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

4.6.18 Copyright © Alar Raabe 201855

Questions

• What is architecture of a (software) system?

• Why architecture of (software) system is
important?

• Does every (software) system has an
architecture?

• Which part of the software architecture
assures the durability (guards against the
erosion)?

• What is a description of architecture of a
(software) system? From what it consists of?

• What is the purpose of (software) system
architecture description?

• What is a viewpoint and what is a view? How
these differ?

• Who are stakeholders of a (software)
system? Bring examples?

• What are system architecture related
concerns? Bring examples?

• What is a (software) architecture
framework? From what it consist of?

• Which kinds of (software) architecture
structures there are?

• What is model? Is any picture a model?

• What is modularity? What it creates?

• What is abstraction?

• Does software architecture description has
an architecture?

4.6.18 Copyright © Alar Raabe 201856

Literature

• Beginning
– https://people.cs.clemson.edu/~mark/subroutines.html
– https://www.fourmilab.ch/babbage/sketch.html

• Early writers
– http://www.melconway.com/Home/Committees_Paper.html
– http://worrydream.com/refs/Brooks-NoSilverBullet.pdf
– http://repository.cmu.edu/cgi/viewcontent.cgi?article=2979&context=compsci
– https://www.researchgate.net/publication/3188975_On_the_Design_and_Development_of_Program

_Families
– http://www.jacksonworkbench.co.uk/stevefergspages/jsp_and_jsd/index.html

• Software Architecture
– http://users.ece.utexas.edu/~perry/work/papers/swa-sen.pdf
– http://www.laputan.org/pub/sag/wolf-arch-foundations.pdf
– https://www.sei.cmu.edu/library/assets/icse03-1.pdf

• http://www.iso-architecture.org/ieee-1471/cm/

• … Google “software architecture” ...

https://people.cs.clemson.edu/~mark/subroutines.html
https://www.fourmilab.ch/babbage/sketch.html
http://www.melconway.com/Home/Committees_Paper.html
http://worrydream.com/refs/Brooks-NoSilverBullet.pdf
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2979&context=compsci
https://www.researchgate.net/publication/3188975_On_the_Design_and_Development_of_Program_Families
https://www.researchgate.net/publication/3188975_On_the_Design_and_Development_of_Program_Families
http://www.jacksonworkbench.co.uk/stevefergspages/jsp_and_jsd/index.html
http://users.ece.utexas.edu/~perry/work/papers/swa-sen.pdf
http://www.laputan.org/pub/sag/wolf-arch-foundations.pdf
https://www.sei.cmu.edu/library/assets/icse03-1.pdf
http://www.iso-architecture.org/ieee-1471/cm/

4.6.18 Copyright © Alar Raabe 201857

Terms (Glossary)

Term Definition

architecture fundamental conception of a system in its environment embodied in elements, their
relationships to each other and to the environment, and principles guiding system design
and evolution

architecture decision choice made from among possible options that addresses one or more architecture-related
concerns

architecture description collection of work products used to describe an architecture

architecture model work product from which architecture views are composed

architecture rationale explanation or justification for an architecture decision

architecture view work product representing a system from the perspective of architecture-related concerns

architecture viewpoint work product establishing the conventions for the construction, interpretation and use of
architecture views

architecture-related
concern

area of interest in a system pertaining to developmental, technological, business,
operational, organizational, political, regulatory, social, or other influences important to one
or more of its stakeholders

environment context determining the setting and circumstances of developmental, technological,
business, operational, organizational, political, regulatory, social and any other influences
upon a system

model correspondence relation on two or more architecture models

stakeholder individual, team, organization, or class thereof, having concerns with respect to a system

purpose {one of system concerns}

system {a conceptual entity defined by its boundaries}

ISO/IEC 42010ISO/IEC 42010

4.6.18 Copyright © Alar Raabe 201858

Crash Course on UML

Class
(general Concept)

Part

Whole

Sub-Class
(specific Concept)

0..*

Association
Class

▲ is a ▼ has a

is associated with

parts

There are ...

Whole has
zero or many

parts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Design vs. Architecture
	Early Views on Software Architecture
	Slide 20
	Slide 21
	Software Architecture as Discipline
	Agile and Software Architecture
	Slide 24
	Slide 25
	Slide 26
	Software Architecture Standards
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Example: Sensor Collection Service
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

