
Software (Systems)
Architecture Foundations

Lecture #2

Architecture Styles

Alar Raabe

29.4.18 Copyright © Alar Raabe 20182

Recap of Last Lecture

Architecture with desirable
properties doesn't emerge itself, it
needs to be designed !

Architecture with desirable
properties doesn't emerge itself, it
needs to be designed !• Software Systems Architecture is a

– fundamental conception of a software system in its
– environment embodied in
– elements, their relationships to each other and to the environment, and
– principles guiding software system design and evolution

• Architecture is important
– as a cause of certain properties → designing architecture allows us to address concerns and to achieve

required and desirable properties of software systems
– as fundamental conception of software system → allows us to reason (i.e. answer questions) about the

software system and its properties, and foresee those properties without building and testing the actual system

• Software Systems Architecture Description is a
– collection of related (corresponding) models, organized into cohesive groups of
– synthetic (constructed) or projective (derived) views, defined by viewpoints according to the related set of

concerns (defined in architecture framework)

• Architecture Description has value as
– a document, it provides guidance for constructing and evolving the software system, and allows us to record

and communicate our knowledge and decisions about the software system architecture
– a model, it allows us to reason (i.e. answer questions) about the software system architectures (e.g. evaluate

and compare architectures)

29.4.18 Copyright © Alar Raabe 20183

Content

• Intro
– Different Levels of Commonality in Software

• Software Architecture Style

• Classifications of Software Architecture Styles

• Analysis of some Software Architecture Styles
– Main styles: data flow, call and return, data centered, …
– Some “modern” styles: micro-services, map-reduce, …
– Emergent architecture – “Big Ball of Mud”

• Using Software Architecture Styles in Design

• Derived (Complex) architecture styles (REST, ...)

• Designing an Architecture Style (on example of REST)

• Conclusions

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

29.4.18 Copyright © Alar Raabe 20184

Bridges … some have Something in Common

Pictures © Wikipedia & Wikimedia Commons

Example

29.4.18 Copyright © Alar Raabe 20185

Bridges Structure Types

• Beam,
Truss,
Cantilever

• Arch,
Tied arch

• Suspension,
Cable-stayed

Pictures © Wikipedia & Wikimedia Commons

Example

29.4.18 Copyright © Alar Raabe 20186

Different Levels of Commonality in Software

• Specific to a (programming) language

– Software Idioms – coding/programming
• describe usage of (programming) language for certain (simple) problems

– Programming Style – programming
• a consistent set of idioms (e.g. fluent style, functional style, …)

• (Programming) language independent

– Design Patterns – design
• describe standard solutions to certain common functional problems in certain contexts

– Architecture Styles – architectural design
• define a class of systems with specific (non-functional) properties
• describe standard solution to a class of non-functional problems

reuse of (design) knowledgereuse of (design) knowledge

29.4.18 Copyright © Alar Raabe 20187

Content

• Intro
– Different Levels of Commonality in Software

• Software Architecture Style

• Classifications of Software Architecture Styles

• Analysis of some Software Architecture Styles
– Main styles: data flow, call and return, data centered, …
– Some “modern” styles: micro-services, map-reduce, …
– Emergent architecture – “Big Ball of Mud”

• Using Software Architecture Styles in Design

• Derived (Complex) architecture styles (REST, ...)

• Designing an Architecture Style (on example of REST)

• Conclusions

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

29.4.18 Copyright © Alar Raabe 20188

Software Architecture Style

• Characterizes a family/class of system architectures that are related by
shared structural and semantic properties

• Software Architecture Style is defined by
– a vocabulary of design elements
– a set of design rules, or constraints (incl. topology)
– semantic interpretation (incl. a computational model)
– analyses that can be performed on systems built in that style

• Additionally Software Architecture Style is characterized by
– the common examples of its use
– the advantages and disadvantages of using it
– the common specializations of it

A coherent package of pre-
made design decisions

A coherent package of pre-
made design decisions

29.4.18 Copyright © Alar Raabe 20099

Various Topologies

Linear Tree Star (Snowflake)

Grid (Torus)

Bus

Ring Fully Interconnected

What's the difference?What's the difference?

Example

29.4.18 Copyright © Alar Raabe 201810

Benefits of using a Software Architectural Style

• Design Reuse
– well-understood solutions can be applied to new problems

• Code Reuse
– shared implementations of invariant aspects of a style

• Understandability of system organization (specific language)
– e.g. a phrase such as “client-server” conveys a lot of information

• Interoperability
– supported by style standardization

• Style-Specific Analysis
– enabled by the constrained design space

• Visualizations
– style-specific descriptions matching engineer’s mental models

A coherent package of pre-
made design decisions

A coherent package of pre-
made design decisions

29.4.18 Copyright © Alar Raabe 201811

Content

• Intro
– Different Levels of Commonality in Software

• Software Architecture Style

• Classifications of Software Architecture Styles

• Analysis of some Software Architecture Styles
– Main styles: data flow, call and return, data centered, …
– Some “modern” styles: micro-services, map-reduce, …
– Emergent architecture – “Big Ball of Mud”

• Using Software Architecture Styles in Design

• Derived (Complex) architecture styles (REST, ...)

• Designing an Architecture Style (on example of REST)

• Conclusions

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

29.4.18 Copyright © Alar Raabe 201812

Flynn’s Taxonomy of Computer Architecture

• Classification of computer architectures by M. J. Flynn (1966)
based on two information flows

– instructions stream
– data stream

instructions

data
one many

one

Single Instructions
Single Data (SISD)

traditional single
processor

Multiple Instructions
Single Data (MISD)

processor pipelines &
systolic arrays

many

Single Instruction
Multiple Data (SIMD)

vector and matrix
processors

Multiple Instructions
Multiple Data (MIMD)

multiprocessors

Data

Processor(s)

In
st

ru
ct

io
ns

Data

Processor(s)

In
st

ru
ct

io
ns

Data

Processor(s)

In
st

ru
ct

io
ns

Example

29.4.18 Copyright © Alar Raabe 201813

Classifications of
Software Architecture Styles

• “Boxology” (M. Shaw and P. Clements)
– Major axes of classification are the control and data interactions among

components
– Architectural styles are discriminated by the following categories of features

• which kinds of components and connectors are used in the style – constituent parts

• how control is shared, allocated, and transferred among the components

• how data is communicated through the system

• how data and control interact

• what type of reasoning is compatible with the style

• CMU SEI (L. Bass, P. Clements, R. Kazman)
– Three kinds of architectural structures that embody decisions

• how the system is to be structured as a set of code or data units that have to be
constructed or procured (modules → units of implementation)

• how the system is to be structured as a set of elements that have run-time behavior –
(components → computation) and interactions (connectors → communication)

• how the system will relate to non-software structures in its environment

29.4.18 Copyright © Alar Raabe 201814

Classification of Architecture Styles

• Data Flow
– Topology is linear

• Flow is continuous → Pipes and Filters

• Flow is sporadic → Batch Sequential

– Topology is arbitrary → Data Flow Network

• Call and Return
– Topology is tree → Main Program & Subroutines or Layers (when data flow is isomorphic)
– Topology is star → Client-Server
– Topology is arbitrary → Abstract Data Types (static calls) or Objects (dynamic calls)

• Independent Components
– Connectors are signals → Event-Based (asynchronous control)
– Connectors are messages → Communicating Processes

• Data Centered
– Connectors are queries → Repositories
– Connectors are direct access → Black-Boards

“Boxology” – Shaw & Clements“Boxology” – Shaw & Clements

29.4.18 Copyright © Ala Raabe 200815

Software Architecture Structures of Different Kind

• Module structures – system’s structure for construction or procurement
– Decomposition structure → decomposition, information hiding and encapsulation
– Uses structure → useful functional sub-sets (supports incremental development)
– Layer structure → portability (supports change of the underlying computing platform)
– Class (or generalization) structure → reuse and incremental addition of functionality
– Data model → the static information structure

• Component-and-connector structures – system’s structure during run-time
– Service structure → independent development, modifiability
– Concurrency structure → parallelism and issues associated with concurrent execution

• Allocation structures – relations to non-software structures in system environment
– Deployment structure → performance, data integrity, security, and availability
– Implementation structure → management of development activities and build processes
– Work assignment structure → management of communications and the overall working

process (also determines the major communication pathways among the teams)

CMU SEICMU SEI

29.4.18 Copyright © Ala Raabe 200816

Network-Based Software Architecture Styles

• Data Flow Styles
– Pipe and Filter (PF)
– Uniform Pipe and Filter (UPF)

• Replication Styles
– Replicated Repository (RR)
– Cache ($)

• Hierarchical Styles
– Client-Server (CS)
– Layered-System (LS) and Layered-

Client-Server (LCS)
– Client-Stateless-Server (CSS)
– Client-Cache-Stateless-Server (C$SS)
– Layered-Client-Cache-Stateless-Server

(LC$SS)
– Remote Session (RS)
– Remote Data Access (RDA)

R. FieldingR. Fielding

• Mobile Code Styles
– Virtual Machine (VM)
– Remote Evaluation (REV)
– Code-on-Demand (COD)

– Layered-Code-on-Demand-Client-
Cache-Stateless-Server (LCODC$SS)

– Mobile Agent (MA)

• Peer-to-Peer Styles
– Event-Based Integration (EBI)
– C2 (Event-Based Layered Client-Server)

– Distributed Objects
– Brokered Distributed Objects

29.4.18 Copyright © Alar Raabe 201817

Content

• Intro
– Different Levels of Commonality in Software

• Software Architecture Style

• Classifications of Software Architecture Styles

• Analysis of some Software Architecture Styles
– Main styles: data flow, call and return, data centered, …
– Some “modern” styles: micro-services, map-reduce, …
– Emergent architecture – “Big Ball of Mud”

• Using Software Architecture Styles in Design

• Derived (Complex) architecture styles (REST, ...)

• Designing an Architecture Style (on example of REST)

• Conclusions

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

29.4.18 Copyright © Alar Raabe 201818

Analysis of
some Software Architecture Styles

• For each style we look at
– Structural pattern (components, connectors, topology)
– Optional characteristics (constraints, invariants, computational model, theory, specializations)

– Advantages and Disadvantages

– Examples

• Main Architecture Styles
– Data-Flow Systems – a.k.a. Pipes and Filters or Data Flow Networks

– Data-Centered Systems – a.k.a. Repositories

– Data Abstraction – e.g. Object-Oriented Systems
– Event-Based – i.e. Implicit Invocation Systems
– Independent Components – e.g. Service-Oriented Systems
– Layered Systems – a.k.a. “Abstract Machines”

• Some “modern” Architecture Styles
– Micro-Services, Map-Reduce, …

• Emergent Architecture – a.k.a “Big Ball of Mud”

29.4.18 Copyright © Alar Raabe 200919

Data-flow Systems

shared nothing!shared nothing!

• Structural pattern
– Components – sources, filters, sinks, forks
– Connectors – pipes
– Topology – linear, tree, directed graph

• Characteristics
– Constraints – is feedback (cycles) allowed or not, are pipes buffering or not, …
– Invariants – filters are independent, and do not know the identity of other filters
– Computational model – filters apply a local transformation to the input streams
– Theory – Queueing Theory (A. K. Erlang 1909), theory of flow networks, …

Filter 3

Filter 1

Fork Filter 2Source Sink 2

Sink 1

Filter 0

Filter 31 Filter 32

29.4.18 Copyright © Alar Raabe 200920

Data-flow Systems – Evaluation

shared nothing!shared nothing!

• Advantages
– Modifiability & Reuse – filters can be treated as black boxes (easy to add and/or replace)
– Ease of construction – systems can be hierarchically composed (new filters can be created from

existing)
– Flexibility – system construction/configuration can often be delayed until run-time (supports late

binding)
– Scalability – filters can be run in parallel (they are isolated from other components of the system)
– Understandability/Analyzability – system behavior is a simple composition of component behaviors

(supports well certain analyzes like throughput, latency, deadlock)

• Disadvantages
– Difficult to create interactive applications – because problem is decomposed into sequential steps
– Common data representation – data has to be represented as the lowest common denominator
– Parsing overhead (complexity) – every filter need introduce parsing/unparsing of the data stream
– Unknown memory requirements and deadlock possibility – if output can’t be produced before all

input is received, filter will require a buffer of unlimited size (e.g. sort filter has this problem)
– Often leads to a batch sequential organization of processing – because designer is forced to think of

each filter as providing a complete transformation of input data to output data
– Difficulties in data sharing and maintaining correspondences between separate, but related streams

29.4.18 Copyright © Alar Raabe 201821

Specializations of Data-flow Systems

• Pipe-and-Filter (pipeline) – data-flow networks restricted to linear topology
– systems without feedback loops or cycles (acyclic)
– pipelines (linear topology)

• batch sequential systems – filters process all input data as a single entity

• Unix pipes and filters – configured at run-time and pipes only handling ASCII streams

– bounded pipes – restrict the amount of data that can reside on a pipe
– typed pipes – require that the data passed between two filters have a well-defined type
– systems with only fan-out components

• Data-flow networks – systems whose components operate on large, continuously
available data stream

– components are elements that asynchronously transform input into output with
minimal retained state (i.e., transducers)

– connectors are non-transforming high-volume data flow streams
– components are organized in arbitrary topologies

“Boxology” – Shaw & Clements“Boxology” – Shaw & Clements

29.4.18 Copyright © Alar Raabe 200922

Data-flow Systems Examples

shared nothing!shared nothing!

• Pipes-and-Filters
– Batch processing systems
– Many traditional compilers (pipeline of lexical analysis, parsing, semantic analysis,

and code generation)
– Unix pipelines (defined by shell scripts)

• Signal and graphic processors

• Event Streaming (Complex Event Processing)
– Apache Kafka

• Data Flow Networks (big data systems, stream processing)
– Hadoop, Storm, Samza, Apache Flink, Reactive Streams

• Spreadsheets

29.4.18 Copyright © Alar Raabe 201823

Data-Centered Systems (Repositories)

• Structural pattern
– Components – data sources/processors, repository (data storage), opt. moderator
– Connectors – requests to and/or notifications from blackboard
– Topology – star

• Characteristics
– Constraints – transaction consistency
– Theories – co-algebras, multi-stream interaction machines (Wegner), coordination theory,

transaction theory, …

shared everything!shared everything!

Data Source 1

Data Source 2

Data Source 3

Data Processor 4

Data Processor 5

Data Processor 6

Moderator

Repository
(Data Storage)

29.4.18 Copyright © Alar Raabe 201824

Data-Centered Systems (Repositories) – Evaluation

• Advantages
– Scalability – easy to add more data sources and processors; data sources and

processors can run in parallel and are synchronized through the central repository
– Separation of concerns (problem partitioning) – each data source/processor

performs separate function and solves part of the problem
– Coupling – loose/low coupling between data sources and processors
– Modifiability – data sources and processors can be modified independently

• Disadvantages
– Coupling – tight coupling between data sources/processors and repository
– Scalability – repository becomes bottleneck with too many data sources and

processors
– Difficult to analyze – non-deterministic behavior (system behavior emerges from

the behaviors of data sources and processors)

shared everything!shared everything!

29.4.18 Copyright © Alar Raabe 201825

Specializations of Data Centered Systems (Repositories)

• Traditional systems with central database – input stream of transactions is
main trigger of the processes to execute

• Blackboard – current state of the central data structure is main trigger of
selecting processes to execute

– data sources = knowledge sources – separate, independent parcels of application-
dependent knowledge (interaction among knowledge sources takes place solely
through the blackboard)

– repository = blackboard data structure – problem-solving state data, organized into
an application-dependent hierarchy (knowledge sources make changes to the
blackboard that lead incrementally to a solution to the problem)

– moderator = control – driven entirely by state of blackboard (knowledge sources
respond opportunistically when changes in the blackboard make them applicable)

Software Architecture
Shaw & Clements

Software Architecture
Shaw & Clements

29.4.18 Copyright © Alar Raabe 201826

Data-Centered Systems (Repositories) Examples

• Systems with global database

• Many language compilers & IDEs (with central AST or shared repository of
programs and program fragments)

• Blackboard systems
– Many expert systems (e.g. Hearsay II speech recognition system)
– Applications for complex signal interpretations (e.g. speech and pattern recognition)
– GBBopen (based on Common Lisp)
– Blackboard Event Processor (based on Java)

• Shared (associative) memory (“tuple space”)
– Java Spaces

• Systems that involve shared access to data with loosely coupled agents

shared everything!shared everything!

29.4.18 Copyright © Alar Raabe 201827

Data Abstraction & Object-Oriented Organization

• Structural pattern
– Components – objects (i.e. instances of the abstract data types), encapsulating data

representations and their associated primitive operations, opt. naming service
– Connectors – function and procedure invocations
– Topology – arbitrary

• Characteristics
– Constraints – object is responsible for preserving the integrity of its representation (usually by

maintaining some invariant over it), the representation is hidden from other objects, …

encapsulated data !encapsulated data !

Object is a “manager” – it is
responsible for preserving
the integrity of a resource (a
representation)

Object is a “manager” – it is
responsible for preserving
the integrity of a resource (a
representation)

An inheritance relationship is
not a connector, since it does
not define the interaction
between components in a
system

An inheritance relationship is
not a connector, since it does
not define the interaction
between components in a
system

Naming
Service

29.4.18 Copyright © Alar Raabe 201828

Data Abstraction & Object-Oriented Organization –
Evaluation

• Advantages
– Modifiability – because an object hides its representation from its clients, it is

possible to change the implementation without affecting those clients

– Separation of concerns (problem partitioning) – bundling of a set of accessing
routines with the data they manipulate allows designers to decompose problems into
collections of interacting agents

– Understandability – supports direct modeling of object-oriented domain models
(intuitive mapping from domain models)

– Reuse – encourages software reuse

• Disadvantages
– Coupling – in order for one object to interact with another (via procedure call) it must

know the identity of that other object – whenever the identity of an object changes it
is necessary to modify all other objects that explicitly invoke it (supported by optional
naming service)

– Possible side-effects – if A uses B and C also uses B, then C's effects on B look like
unexpected side effects to A, and vice versa

encapsulated data !encapsulated data !

29.4.18 Copyright © Alar Raabe 201829

Data Abstraction & Object-Oriented Organization

• Specializations
– Objects can be concurrent tasks
– Objects can have have multiple interfaces
– Client-Server (client is triggering and server reactive)
– Cooperating processes

• Examples
– OO programming systems (Java, ...)
– Distributed Object Systems (CORBA, SOM, COM/DCOM)
– OSGi (Open Services Gateway initiative)

encapsulated data !encapsulated data !

29.4.18 Copyright © Alar Raabe 201830

Event-Based, Implicit Invocation

• Structural pattern
– Components – event suppliers/generators, event consumers/listeners/handlers (can also

generate events), event distributors/channels
– Connectors – bindings between events and procedure invocations, procedure invocations

(callbacks)
– Topology – bus (star) or arbitrary

• Characteristics
– Invariants

• event suppliers do not know which consumers handle events – components cannot make assumptions
about order of processing, or what processing will occur as a result of events they generate

– Computational Model – event/driven “implicit” invocation of procedures

decoupled control !decoupled control !

Supplier Consumer

ConsumerSupplier

Supplier/
Consumer

Event Distributor
(Broadcaster)

29.4.18 Copyright © Alar Raabe 201831

Event-Based, Implicit Invocation – Evaluation

• Advantages
– Coupling – loose coupling
– Reuse and Flexibility – any component can be introduced into a system simply by

registering it for the events of that system
– Modifiability – components may be replaced by other components without affecting the

interfaces of other components in the system (eases system evolution)

• Disadvantages
– Non-deterministic – components don’t have control over the computation performed by

the system – when a component announces an event, it has no idea what other
components will respond to it (even if it does know what other components are
interested in the events it announces, it cannot rely on the order in which they are
invoked, nor can it know when they are finished)

– Performance – sometimes data can be passed with the event, but in other situations
event systems must rely on a shared repository for interaction (in these cases global
performance and resource management can become a serious issue)

– Understandability/Analyzability – reasoning about correctness can be problematic,
since the meaning of a procedure that announces events depend on the context of
bindings in which it is invoked

decoupled control !decoupled control !

29.4.18 Copyright © Alar Raabe 201832

Event-Based, Implicit Invocation

• Specializations
– Model-View-Controller (MVC) – specific types of event suppliers/consumers
– Complex Event Processing

• Examples
– User interfaces to separate presentation of data from applications that manage the

data (GUIs, windowing systems)
• X Window System

– Programming environments (IDEs) to integrate tools and to support incremental
semantic checking

– Database management systems to ensure consistency constraints
– Exception handling systems
– Android Intent sub-system

decoupled control !decoupled control !

29.4.18 Copyright © Alar Raabe 201833

Independent Components
(e.g. Service Oriented Architecture)

• Structural pattern
– Components – service providers, services users/consumers, opt. bus/broker, opt. directory
– Connectors – synchronous and asynchronous calls, messages
– Topology – bus (star)

• Characteristics
– Constraints – (explicit) remote calls
– Theories – CSP (C.A.R. Hoare), π-calculus (Milner, Parrow), …

bus and directory are optional !bus and directory are optional !

Service
Provider 2

Service
Provider 1

Service User 2 Service User 3Service User 1

Service
Directory

Service Bus (Broker)

29.4.18 Copyright © Alar Raabe 201834

Independent Components – Evaluation

• Advantages
– Coupling – loose coupling (especially, if asynchronous calls are used)

– Interoperability – service users can transparently call services implemented in
disparate platforms using different languages

– Modifiability – loose coupling between service users and service providers (services
are self-contained and modular)

– Extensibility – if bus is used, adding new services is easy

– Reliability – good fault tolerance, if asynchronous calls are used

• Disadvantages
– Performance – network overhead, overhead of intermediaries (like service directory),

message parsing overhead

– Scalability – limited scalability if synchronous calls are used

– Security – difficult to achieve end-to-end security (needs message level security
mechanisms)

– Testability – difficult to test (complex)

– Reliability – complex error recovery might be needed

bus and directory are optional !bus and directory are optional !

29.4.18 Copyright © Alar Raabe 201835

Independent Components Examples

• Distributed Objects
– OMG CORBA → IIOP, ORB is bus, “Naming Service” is directory
– MS DCOM → DCE/RPC, “Registry Service” is directory

• Distributed Services
– Web Services (HTTP, “UDDI” is directory)

» UDDI = Universal Description, Discovery, and Integration

– Sun Jini, now Apache River (RMI/JERI, “Lookup Service” is directory)

– Enterprise Service Bus
• Mule, Apache ServiceMix, WSO2, …

– Message-Oriented Middleware
• Apache Camel, Apache Kafka

bus and directory are optional !bus and directory are optional !

Killed by the Firewall !
Killed by the Firewall !

29.4.18 Copyright © Alar Raabe 201836

Layers (Abstract Machines)

• Structural pattern
– Components – layers (abstract machines)
– Connectors – procedure calls
– Topology – linear

• Characteristics
– Constraints – strict layering (limiting interactions only to adjacent layers)

Base Software (Layer 2)

Hardware Platform (Layer 0)

Application Software (Layer 3)

System Software (Layer 1)

All problems in computer science can be
solved by another level of indirection

D. Wheeler

All problems in computer science can be
solved by another level of indirection

D. Wheeler

29.4.18 Copyright © Alar Raabe 201837

Layers (Abstract Machines) – Evaluation

• Advantages
– Problem partitioning – supports design based on increasing levels of abstraction (allows

implementors to partition a complex problem into a sequence of incremental steps)
– Modifiability and Portability – because each layer interacts with at most the layers below

and above, changes to the function of one layer affect at most two other layers (layers
can evolve independently)

– Reuse – different implementations of the same layer can be used interchangeably,
provided they support the same interfaces to their adjacent layers (this leads to the
possibility of defining standard layer interfaces to which different implementors can build)

• Disadvantages
– Not all systems are easily structured in a layered fashion

– Problem partitioning – it can be quite difficult to find the right levels of abstraction

– Coupling – considerations of performance may require closer coupling between logically
high-level functions and their lower-level implementations

– Reuse – due to rich interactions between layers it is difficult to define system-
independent layers

Software Architecture
Shaw & Clements

Software Architecture
Shaw & Clements

29.4.18 Copyright © Alar Raabe 201838

Specializations of Layers (Abstract Machines)

• Strict layering – OSI (Open Systems Interconnection reference model)

• Non-strict layering and “vertical” (cross-cutting layers) – OSGi (Open Services Gateway initiative) a
modular service platform for Java

Software Architecture
Shaw & Clements

Software Architecture
Shaw & Clements

Physical

Data Link

Physical

Network

Transport

Session

Presentation

Application

H
o

st
M

e
d

ia

Physical

Data Link

Physical

Network

Transport

Session

Presentation

Application

H
o

st
M

e
d

ia

Modules

Java VM

Native Operating System

Life-Cycle

Execution Environment

S
e

cu
rit

yServices (publish-find-bind)

Bundles (components)
Implementation of
“Independent Components”
style, using “Layers” style !

Implementation of
“Independent Components”
style, using “Layers” style !

29.4.18 Copyright © Alar Raabe 201839

Layers (Abstract Machines) Examples

• Multi-tier (layered) systems
– in module structure (development time) and in component-and-connector structure

(run-time)

• Communication stacks

• Operating systems, database systems, ...

Software Architecture
Shaw & Clements

Software Architecture
Shaw & Clements

Applications

Kernel

CPU Memory Devices

Application Layer
Presentation Layer

Session Layer

Application Layer

Transport Layer
Network Layer

Data Link Layer
Physical Layer

Application Layer

Transport Layer (TCP)

Application Layer

Internet Layer (IP)

Network Access Layer

OSI TCP/IP

User Interface

Application

Data

User Interface

Application

Data

Client

Server

User Interface

Application

Data

29.4.18 Copyright © Alar Raabe 201840

Table-Driven Interpreters (Virtual Machines)

• Structural pattern
– Components – interpreter (interpretation engine), program memory (containing the program to

be interpreted), data or activation record (program state), execution/control state (of the
interpreter)

– Connectors – data and instruction flows

• Characteristics
– Computational model – various: Turing-machine (imperative), finite-state machines (automata),

λ-calculus (functional), ...

Software Architecture
Shaw & Clements

Software Architecture
Shaw & Clements

Interpreter

Inputs

Outputs

Program
Data

(program state)

(interpreter)
State

29.4.18 Copyright © Alar Raabe 201841

Table-Driven Interpreters (Virtual Machines) – Evaluation

• Advantages
– Problem partitioning – supports design based on increased level of abstraction (allows to

partition a complex problem into a problem-specific program and suitable abstract machine)

– Flexibility – highly dynamic behavior through change of program
– Portability – interpreter can be moved to a different platform without changing the programs
– Mobility – program can be moved to suitable execution environment

• code-on-demand – program is requested from remote source and executed locally (e.g. JavaScript
or mobile agents)

• remote execution – program is pushed to remote target (e.g. grid and coud computing)
• mobile agent – program and some data are moved to different hosts

• Disadvantages
– Performance – interpretation overhead (partially remedied by “Just-in-Time compiling”)

– Complexity – defects/bugs can be both in program and in interpreter (requires its own
programming environment)

– Complex memory management

– Security – mobile program provides attack vectors (can be solved by code signing and/or
sandboxing)

Software Architecture
Shaw & Clements

Software Architecture
Shaw & Clements

29.4.18 Copyright © Alar Raabe 201842

Table-Driven Interpreters (Virtual Machines)

• Specializations
– byte-code, threaded code, just-in-time compilation, ...

• Examples
– Excel macros
– Java Virtual Machine
– JavaScript
– Forth (used in Open Firmware)

Software Architecture
Shaw & Clements

Software Architecture
Shaw & Clements

29.4.18 Copyright © Alar Raabe 201843

Some other Familiar Architecture Styles

• Main program/subroutine – main program acts as the driver for the subroutines, typically
providing a control loop

• Distributed (Cooperating) Processes – independent components characterized by
topological features (e.g. ring, star, network, …) or inter-process communication (e.g. one-
way, request/reply, heartbeat, broadcast, token, ...)

• Domain-specific software architectures (or “reference” architectures for a domain) – to
increase the descriptive power of structures (in many cases an executable system can be
generated from the architectural description itself)

• State transition systems – a common organization for many reactive systems (defined in
terms of a set of states and a set of named transitions that move a system from one state to
another)

• Process control systems – systems intended to provide dynamic control of a physical
environment (roughly characterized as a feedback loop in which inputs from sensors are
used by the process control system to determine a set of outputs that will produce a new
state of the environment)

Software Architecture
Shaw & Clements

Software Architecture
Shaw & Clements

29.4.18 Copyright © Alar Raabe 201844

Content

• Intro
– Different Levels of Commonality in Software

• Software Architecture Style

• Classifications of Software Architecture Styles

• Analysis of some Software Architecture Styles
– Main styles: data flow, call and return, data centered, …
– Some “modern” styles: micro-services, map-reduce, …
– Emergent architecture – “Big Ball of Mud”

• Using Software Architecture Styles in Design

• Derived (Complex) architecture styles (REST, ...)

• Designing an Architecture Style (on example of REST)

• Conclusions

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

29.4.18 Copyright © Alar Raabe 201845

Micro-Services

• Structural pattern
– Components – clients, micro-services, data-stores, opt. API gateway, opt. service discovery
– Connectors – service requests
– Topology – arbitrary or star (when using API gateway)

• Characteristics
– Constraints – services are small independent and loosely coupled (often organized around

business capabilities)

Client 1 Client 2 Client 3 Client 4

Service A

API
Gateway

Client B Client C Client D

DB X DB Y DB Z

Service
Discovery

A new and “better” SOA ?A new and “better” SOA ?

Distributed computing fallacies:
1.The network is reliable
2.Latency is zero
3.Bandwidth is infinite
4.The network is secure.
5.Topology doesn't change
6.There is one administrator
7.Transport cost is zero
8.The network is homogeneous

P. Deutch & J. Gosling

Distributed computing fallacies:
1.The network is reliable
2.Latency is zero
3.Bandwidth is infinite
4.The network is secure.
5.Topology doesn't change
6.There is one administrator
7.Transport cost is zero
8.The network is homogeneous

P. Deutch & J. Gosling

29.4.18 Copyright © Alar Raabe 201846

Micro-Services – Evaluation

• Advantages
– Robustness – improved fault isolation (applications can remain unaffected by the failure of a

single module)
– Scalability – single services can be scaled by cloning or by data partitioning

– Portability – eliminated long-term commitment to a single technology stack
– Changeability – independent deployment and rolling back changes are much easier
– Undertandability – makes it easier for a new developer to understand the functionality of a

service

• Disadvantages
– Complexity of development – distributed systems need extra functionality to handle

errors/disruptions and latency
– Complexity of deployment and operations

• multiple databases and transaction management can be difficult and take large effort
• deployment of micro-services may require coordination among multiple services, which may not be

as straightforward as deploying a monolith in a container

– Testability – testing a micro-services-based application can be cumbersome (each
dependent service needs to be confirmed before you can start testing)

A new and “better” SOA ?A new and “better” SOA ?

29.4.18 Copyright © Alar Raabe 201847

Micro-Services vs. Service Oriented Architecture (SOA)

A different architecture style ?A different architecture style ?

• Micro-Services
– For modularization of applications into loosely

coupled components
– No centralized service management

– Focuses on decoupling (decomposition of
application)

– No centralized communication infrastructure
(better error tolerance)

– Usually single simple communication protocol
– Limits integration choices
– Usually smaller granularity of components
– Multiple independent data-stores
– Relaxed governance

– Better suited for compact and well-
partitioned applications

• Service-Oriented Architecture (SOA)
– For composition of application from

independent components
– Centralized service management

(Enterprise Service Bus)

– Focuses on reuse (of business
functionality)

– Usually centralized communication
infrastructure (single point of failure)

– Supports multiple communication protocols
– Focuses on interoperability
– Usually larger granularity of components
– Usually share data-store
– Common governance

– Better suited for large complex
enterprise applications (sets of
applications)

29.4.18 Copyright © Alar Raabe 201848

Micro-Services Examples

• Specializations
– with API Gateway
– with light-weight integration bus
– with service mesh – kind of “distributed (integration) bus”

• Examples
– systems of many large web companies (Netflix, eBay, Amazon, Twitter, PayPal, ...)
– tools/frameworks

• Spring Boot

• Jersey (for REST)

A new and “better” SOA ?A new and “better” SOA ?

29.4.18 Copyright © Alar Raabe 201849

Map-Reduce Architecture

• Structural pattern
– Components – mapper, opt. shuffle, reducer, processors

– Connectors – data flows

– Constraints –

• Characteristics
– Computational model –

– Invariants – must consist of exactly one Map function followed by an optional Reduce function

– Theory – λ-calculus (A. Church), higher-order functions or functors (map, filter, fold/reduce)

Input Data Output
Data

ProcessShuffle
(Sort)

Map
(Distribute)

Reduce
(Join)

dīvide et imperādīvide et imperā

29.4.18 Copyright © Alar Raabe 201850

Map-Reduce Architecture – Evaluation

• Advantages
– Scalable – efficiently execute programs on large clusters, by exploiting data

parallelism
– Simple – parallelization complexity is handled by the framework
– Portability – independent of the underlying storage mechanism

• Disadvantages
– Inflexible – each job must consist of exactly one Map followed by an optional

Reduce, and steps cannot be executed in a different order or overlapped
– Performance highly depends on the nature of the application
– Doesn’t support incremental computations

dīvide et imperādīvide et imperā

29.4.18 Copyright © Alar Raabe 201851

Map-Reduce Architecture Examples

• Specializations
– Iterative Map-Reduce (e.g. Google’s PageRank)

• Examples of its use
– Apache Hadoop (MapReduce)
– Twister (iterative map-reduce)
– applied for

• inverted index construction

• document clustering

• machine learning

• ...

dīvide et imperādīvide et imperā

29.4.18 Copyright © Alar Raabe 201852

• Structural pattern
– Components – base system, plugins, opt. plugin manager
– Connectors – service interfaces
– Topology – star

• Characteristics
– Constraints – plugins conform to service interfaces and depend on base system services

• Examples
– Mozilla browser
– Eclipse IDE

Plugin Architecture Style

Adaptive SystemsAdaptive Systems

Plugin
Manager

Base System (Host Application)

Plugin A Plugin B

Plugin C Plugin C*

29.4.18 Copyright © Alar Raabe 201853

Content

• Intro
– Different Levels of Commonality in Software

• Software Architecture Style

• Classifications of Software Architecture Styles

• Analysis of some Software Architecture Styles
– Main styles: data flow, call and return, data centered, …
– Some “modern” styles: micro-services, map-reduce, …
– Emergent architecture – “Big Ball of Mud”

• Using Software Architecture Styles in Design

• Derived (Complex) architecture styles (REST, ...)

• Designing an Architecture Style (on example of REST)

• Conclusions

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

29.4.18 Copyright © Alar Raabe 201854

Emergent Architecture – a.k.a. “Big Ball of Mud”
(B. Foote & J. Yoder)

• Structural pattern
– Components – various
– Connectors – various
– Topology – arbitrary

• Characteristics
– Constraints – no
– Invariants – no
– Theory – no

De-Facto Standard Software Architecture !De-Facto Standard Software Architecture !

Pictures © Daily WTF

29.4.18 Copyright © Alar Raabe 201855

Emergent Architecture – a.k.a. “Big Ball of Mud”
(B. Foote & J. Yoder)

• Emerges from
– “Throwaway code” – a.k.a. quick hack, prototype or “spike” in XP/agile
– “Piecemeal growth” – a.k.a iterative/incremental development
– “Keep it working” – i.e. overhaul is needed, but you have to keep system working
– “Shearing layers” – i.e. different artifacts change at different rates
– “Sweeping it under the rug” – i.e. even if you can’t clean the mess, hide it

• Forces corresponding to emergence
– time – designing architecture takes time
– cost – designed architecture costs and is long-term investment
– experience and skill – designing architecture requires know-how
– visibility – software is not tangible, software architecture is “under the hood”
– complexity and scale of the problems – software is ugly because the problem is ugly
– change – predicting future change requires vision and courage
– organization – architecture reflects organization

Complexity increases rapidly until it
reaches a level of complexity just
beyond that with which we can
comfortably cope

W. Cunningham

Complexity increases rapidly until it
reaches a level of complexity just
beyond that with which we can
comfortably cope

W. Cunningham

Conway’s law !
Conway’s law !

29.4.18 Copyright © Alar Raabe 201856

Conway’s Law

• Organizations, produce designs, which are copies of these
organizations

• Any organization that designs a system (defined broadly) will produce a
design whose structure is a copy of the organization's communication
structure

– a design effort should be organized according to the need for communication
– because the design which occurs first is almost never the best possible – flexibility

of organization is important to effective design

(M. Conway 1968)

Make sure the organization is
compatible with the product
architecture

J. Coplien

Make sure the organization is
compatible with the product
architecture

J. Coplien

29.4.18 Copyright © Alar Raabe 201857

Effects of Conway’s Law

• Why do large systems disintegrate?

– First, the realization by the initial designers that the system will be large, together
with certain pressures in their organization, make irresistible the temptation to
assign too many people to a design effort

– Second, application of the conventional wisdom of management to a large design
organization causes its communication structure to disintegrate (due to delegation
and Parkinson’s law of expanding organizations)

– Third, the homomorphism of system to the design organization insures that the
structure of the system will reflect the disintegration which has occurred in the
design organization

(M. Conway 1968)

Greatest single common factor behind
many poorly designed systems has been
the availability of a design organization in
need of work

M. Conway

Greatest single common factor behind
many poorly designed systems has been
the availability of a design organization in
need of work

M. Conway

29.4.18 Copyright © Alar Raabe 200958

“Big Ball of Mud” – Evaluation

Mostly business concerns !Mostly business concerns !

• Advantages
– Quick to make → fast Time-to-Market
– Cheap to make → good Cost vs. Benefit ratio
– Does not need planning, nor governance → it just emerges!
– Does not need skills → anybody could/would do it

• Disadvantages
– Maintainability → difficult to maintain
– Modifiability → hard to change
– Testability → difficult to test

Mostly IT concerns !Mostly IT concerns !

De-Facto Standard Software Architecture !De-Facto Standard Software Architecture !

29.4.18 Copyright © Alar Raabe 201859

Content

• Intro
– Different Levels of Commonality in Software

• Software Architecture Style

• Classifications of Software Architecture Styles

• Analysis of some Software Architecture Styles
– Main styles: data flow, call and return, data centered, …
– Some “modern” styles: micro-services, map-reduce, …
– Emergent architecture – “Big Ball of Mud”

• Using Software Architecture Styles in Design

• Derived (Complex) architecture styles (REST, ...)

• Designing an Architecture Style (on example of REST)

• Conclusions

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

29.4.18 Copyright © Alar Raabe 201860

Using Styles in System Design
Choosing Styles to fit the Problem

• Use data flow (batch sequential or pipe-and-filter = pipeline) style if problem
– can be decomposed into sequential stages (if each stage is incremental, consider

pipeline)
– involves transformations on continuous streams of data (when problem involves

passing rich data representations, avoid pipes restricted to ASCII)

• Use data abstraction or object-oriented style, if
– representation of data is likely to change over the lifetime of the system
– a central issue is understanding data, its management, and its representation (if the

data is long-lived, use on repositories)

• Use data-centered (repository) style if data is long-lived and use
– blackboard, if the input data is noisy (low signal-to-noise ratio) and the execution

order cannot be predetermined
– database management system, the execution order is determined by a stream of

incoming requests and the data is highly structured

“Boxology” – Shaw & Clements“Boxology” – Shaw & Clements

29.4.18 Copyright © Alar Raabe 201861

Using Styles in System Design
Choosing Styles to fit the Problem

• Use closed loop control architecture, if problem
– involves controlling continuing action, is embedded in a physical system, and is

subject to unpredictable external perturbation

• Use interpreter, if problem
– computational but there’s no machine on which it can be executed

• Use of other styles
– independent components or cooperating processes, if task requires a high

degree of flexibility/configurability, loose coupling between tasks, and reactive tasks
– an event-based implicit invocation architecture, if there's reason not to bind the

recipients of signals from their originators,
– a replicated worker or heartbeat style cooperating processes, if the tasks are of a

hierarchical nature
– client-server, if the tasks are divided between producers and consumers
– a token passing style cooperating processes, if it makes sense for all of the tasks

to communicate with each other in a fully connected graph

“Boxology” – Shaw & Clements“Boxology” – Shaw & Clements

29.4.18 Copyright © Alar Raabe 201862

Different Architecture Styles → Different Properties

Task 1

Task 2

UI

Scheduler

Task 3

DB

Task 1

Task 2

UI

Scheduler

Task 3

DB

Example

29.4.18 Copyright © Alar Raabe 201863

Different Architecture Styles → Different Properties

Task 1

Task 2

UI

New Task 2.5

Scheduler

Task 3

DB

Task 1

Task 2

UI

New Task 2.5

Scheduler

Task 3

DB

adding new taskadding new task

Example

29.4.18 Copyright © Alar Raabe 201864

Different Architecture Styles → Different Properties

Task 1

Task 2

UI

Generator

Task 3

DB

Task 1

Task 2

UI

Forecast Task

Task 3

DB

Temp DB

Task 1

Task 2

Task 3

Forecast Task

Generator

Task 1

Task 2

Task 3

adding forecasts of portfolioadding forecasts of portfolio

Example

Scheduler Scheduler

29.4.18 Copyright © Alar Raabe 201865

Content

• Intro
– Different Levels of Commonality in Software

• Software Architecture Style

• Classifications of Software Architecture Styles

• Analysis of some Software Architecture Styles
– Main styles: data flow, call and return, data centered, …
– Some “modern” styles: micro-services, map-reduce, …
– Emergent architecture – “Big Ball of Mud”

• Using Software Architecture Styles in Design

• Derived (Complex) architecture styles (REST, ...)

• Designing an Architecture Style (on example of REST)

• Conclusions

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

29.4.18 Copyright © Alar Raabe 201866

Different ways to combine Architecture Styles

• Mixing architecture styles – using elements from many architecture styles
together

• Hierarchical decomposition – an element of a system organized in one
architectural style may have an internal structure that is developed a completely
different style

• Conforming same architecture element (component or connector) to multiple
architecture styles – having multiple architectural connectors for a single
component or combining multiple component types for a given architecture
element

– access a repository through part of its interface, but interact through pipes with other
components in a system, and accept control information through another part of its
interface

– “active database” – a repository which activates external components through implicit
invocation (e.g. blackboards are often constructed this way)

Software Architecture
Shaw & Clements

Software Architecture
Shaw & Clements

29.4.18 Copyright © Alar Raabe 201867

REpresentational State Transfer (REST)

(Compound Style)

• Structural pattern
– Components

• Data (resources, resource identifiers, representations, representation metadata, resource metadata,
control data)

• Processing (origin servers, gateways, proxies, user agents)

– Connectors – clients, servers, caches, resolvers, tunnels

• Characteristics
– Constraints – data is not encapsulated
– Theory – Fielding analysis

architecture of web !architecture of web !

Origin Server 1Server

User Agent 3 Client

User Agent 1 Proxy 1

User Agent 2

Client

Client

Server Cache Client

Origin Server 2Server
Gateway 1

Server Client

Origin Server 3Server

29.4.18 Copyright © Alar Raabe 201868

REpresentational State Transfer (REST) – Evaluation

architecture of web !architecture of web !

• Advantages
– Simplicity – no need for explicit resource discovery mechanism (due to hyper-linking) and

uniform interface

– Scalability – stateless communication, layered system

– Efficiency – caching promotes network efficiency and fast response times

– Evolvability – support of document type evolution (such as HTML and XML) without
impacting backward or forward compatibility

– Extensibility – allows support for new content types without impacting existing and legacy
content types

• Disadvantages
– Limited functionality – selected uniform interface (HTTP) is difficult for handling real time

asynchronous events

– Scalability – managing URI namespace can be cumbersome, this can impact network
performance by encouraging more frequent client-server requests and responses

– Visibility – in case code-on-demand is used to extend the client

29.4.18 Copyright © Alar Raabe 201869

Representational State Transfer (REST)
Examples

• WWW (World Wide Web)

• CMIP/CMOT (Common Management Information Protocol)

• Amazon Web Services (AWS) REST API

• IBM WebSphere Portal REST API

architecture of web !architecture of web !

29.4.18 Copyright © Alar Raabe 201870

Chiron-2 (C2) Architecture

• Structural pattern
– Components – components (have state & behavior), connectors (message routing devices)
– Connectors – communication links (for messages)
– Topology – hierarchical network

• Characteristics
– Constraints

• each component and connector has
– top (which emits requests) and
– bottom (which emits notifications)

• components and connectors are organized into
layers (strata)

– Computational model – event-based (implicit invocation)

– Invariant
• components may have own thread(s) of control

• limited visibility (substrate independence)

• message based communication

• no shared address space

– Theory – UCI Chiron-2 formalism (in Z)

a component called connector !a component called connector !

Component 1

Component 2 Component 3

R
e

q
u

e
st

s

N
o

tif
ic

a
tio

n
s

Connector A

Component 4

Connector B

29.4.18 Copyright © Alar Raabe 201871

Chiron-2 (C2) Architecture – Evaluation

• Advantages (according to UCI SRI)
– Separation of Concerns – encourages modular strategy
– Scalability – supports multiple levels of component interface granularity
– Extensibility – limiting component interdependence (components have standardized

interfaces)
– Flexibility/Modifiability – by incorporating additional or re-configuring existing components

(prior to or during execution)
– Reliability – components can be carefully designed, implemented, and verified before usage
– Cost Reduction – component reuse and architectural guidance
– Understandability – the use of high level models
– Distributability/Parallelization – no assumption of shared memory or address space

• Disadvantages (according to Fielding)
– Scalability/Efficiency – does not support intermediaries/caching (no generic resource

interface, no guaranteed stateless interactions)

a component called connector !a component called connector !

29.4.18 Copyright © Alar Raabe 201873

Lambda Architecture

• Structural pattern
– Components – data sources, batch data processors (providing accuracy), streaming data

processors (filling gap due to batch processors lag), query service/servers
– Connectors – data channels

• Characteristics
– Constraints – depends on a data model with an append-only, immutable data source that

serves as a system of record
– Theory –

Data Source(s)

Real-Time Processing
(streaming)

Batch Processing

29.4.18 Copyright © Alar Raabe 201874

Lambda Architecture – Evaluation

• Advantages
– balances latency, throughput, and fault-tolerance by using batch processing to

provide comprehensive and accurate views of batch data, while simultaneously
using real-time stream processing to provide views of online data

• Disadvantages
– inherent complexity – different code base needed for streaming and batch side

must be maintained and kept in sync

• Examples
– Yahoo
– Netflix Suro

29.4.18 Copyright © Alar Raabe 201875

Content

• Intro
– Different Levels of Commonality in Software

• Software Architecture Style

• Classifications of Software Architecture Styles

• Analysis of some Software Architecture Styles
– Main styles: data flow, call and return, data centered, …
– Some “modern” styles: micro-services, map-reduce, …
– Emergent architecture – “Big Ball of Mud”

• Using Software Architecture Styles in Design

• Derived (Complex) architecture styles (REST, ...)

• Designing an Architecture Style (on example of REST)

• Conclusions

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

29.4.18 Copyright © Alar Raabe 201876

Representational State Transfer (REST)
Constituent Styles

Architecture Style Desired Properties

Null Style
an empty set of constraints

Client-Server Style (CS) separation of concerns modifiability, independent
evolution

Stateless Communication (S) session state in client visibility, reliability,
scalability

Cache ($) a variant of Replicated
Repository (RR)

network efficiency

Uniform Interface (U)
a constrained set of well
defined operations and
content types

simplicity, portability

Layered System Style (LS)
hierarchical decomposition,
managing complexity

simplicity, scalability

{optional}
Code-on-Demand (COD)

based on Virtual Machine –
simplified clients, but lower
visibility

modifiability
(extensibility), simplicity

architecture of web !architecture of web !

29.4.18 Copyright © Alar Raabe 201877

Deriving REST from Constituents

RR CS LS UVM

$ CSS LCS COD

C$SS LC$SS LCODC$SS REST

replicated

on-demand stateless

cacheable reliable shared

scalable multi org. reusable

extensible

simple
visible

uniform interface

programmableseparated
layered

intermediate
processing mobile

architecture of web !architecture of web !

29.4.18 Copyright © Alar Raabe 201878

Content

• Intro
– Different Levels of Commonality in Software

• Software Architecture Style

• Classifications of Software Architecture Styles

• Analysis of some Software Architecture Styles
– Main styles: data flow, call and return, data centered, …
– Some “modern” styles: micro-services, map-reduce, …
– Emergent architecture – “Big Ball of Mud”

• Using Software Architecture Styles in Design

• Derived (Complex) architecture styles (REST, ...)

• Designing an Architecture Style (on example of REST)

• Conclusions

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

Each (architecture) style provides an
abstraction for the interactions of
components, capturing the essence of a
pattern of interaction

Roy Fielding

29.4.18 Copyright © Alar Raabe 201879

Conclusions

• Architectural structures can embody decisions how the system
– is to be structured as a set of code or data units that have to be constructed

or procured
– is to be structured as a set of elements that have run-time behavior –

(components) and interactions (connectors)
– will relate to non-software structures in its environment

• Architecture Style
– characterizes a family or a class of system architectures that are related by

shared structural and semantic properties

– is defined by
• a vocabulary of design elements
• design rules, or constraints (incl. topology)
• semantic interpretation
• analyses that can be performed on systems built in that style

A coherent package of pre-made design
decisions that provide a set of properties

A coherent package of pre-made design
decisions that provide a set of properties

29.4.18 Copyright © Alar Raabe 201880

Conclusions

• Usage of Architecture Styles Supports
– Design Reuse – well-understood solutions can be applied to new problems
– Code Reuse – shared implementations of invariant aspects of a style
– Understandability of System Organization – e.g. meaning of “client-server”
– Interoperability – supported by style standardization
– Style-Specific Analysis – enabled by the constrained design space
– Visualizations – style-specific descriptions matching engineer’s mental models (e.g.

stack diagrams for layers)

• Main Architecture Styles can and must be combined
– to achieve the required properties of interest
– to match the problem structures (e.g. ways of decomposition) or problem nature
– by mixing styles, using hierarchical decomposition or conforming architecture elements

to multiple styles

A coherent package of pre-made design
decisions that provide a set of properties

A coherent package of pre-made design
decisions that provide a set of properties

29.4.18 Copyright © Alar Raabe 201881

Thank You!

53. The great way is easy, yet
programmers prefer the side paths.
Be aware when things are out of
balance. Remain centered within
the design.

Lao Tsu (by Philippe Kruchten)

53. The great way is easy, yet
programmers prefer the side paths.
Be aware when things are out of
balance. Remain centered within
the design.

Lao Tsu (by Philippe Kruchten)

29.4.18 Copyright © Alar Raabe 201882

Questions

• List ways of representing commonalities of
design on different levels?

• What is software architecture style?

• What are the main parts of an architecture
style?

• Describe classification principles of
software architecture styles?

• List the main software architecture styles?

• Describe named software architecture
style, what are its structural pattern,
advantages and disadvantages?

• Describe the benefits of architecture
styles?

• Formulate Conway’s law, describe how is
affects software architecture?

• How can be different architecture styles
combined?

• What kinds of structures are present in
software architecture, and what decisions
these structures embody?

• Describe REST style and rationale behind its
constituent architecture styles?

• What are constituent styles of C2?

• How to choose the suitable architecture style

• What architecture styles support best
– scalability?

– portability & modifiability?

29.4.18 Copyright © Alar Raabe 201883

Literature

• Different Architecture Styles
– https://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/Boxology.pdf

– https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
– https://msdn.microsoft.com/en-us/library/ee658117.aspx

– https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nu
tshell-a0b47a1e9013

• Particular Architecture Styles
– https://martinfowler.com/articles/microservices.html

– http://www.laputan.org/mud/
– http://www.melconway.com/Home/Conways_Law.html

– http://www.ics.uci.edu/~arcadia/C2/c2.html

– https://research.google.com/archive/mapreduce.html

• Constructing Software Style
– https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

• … Google “software architecture style” …

29.4.18 Copyright © Ala Raabe 200884

Main Architecture Styles
Data-Flow = Shared Nothing

Filter 3

Filter 1

Fork Filter 2Source Sink 2

Sink 1

Filter 0

Filter 31 Filter 32

Data-Centered = Shared Everything

Data Source 1

Data Source 2

Data Source 3

Data Processor 4

Data Processor 5

Data Processor 6

Moderator

Repository
(Data Storage)

Data Abstraction (Object-Oriented) = Encapsulated Data

Independent Components = Interoperability

Service
Provider 2

Service
Provider 1

Service User 2 Service User 3Service User 1

Service
Directory

Service Bus (Broker)

Event-Based (Implicit Invocation) = Decoupled Control

Supplier Consumer

ConsumerSupplier

Supplier/
Consumer

Event Distributor
(Broadcaster)

Layers (Abstract Machines) = Portability

Base Software (Layer 2)

Hardware Platform (Layer 0)

Application Software (Layer 3)

System Software (Layer 1)

https://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/Boxology.pdf
https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
https://msdn.microsoft.com/en-us/library/ee658117.aspx
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://martinfowler.com/articles/microservices.html
http://www.laputan.org/mud/
http://www.melconway.com/Home/Conways_Law.html
http://www.ics.uci.edu/~arcadia/C2/c2.html
https://research.google.com/archive/mapreduce.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

29.4.18 Copyright © Alar Raabe 201885

Classification of Architectural Styles

Style Constituent Parts Control Issues Data Issues

Components Connectors Topology Synchronicity Topology Continuity Isomorphic

Data Flow Architectural Styles

Batch Sequential programs data batches linear sequential linear sporadic yes

Data Flow Network transducers data streams arbitrary asynchronous arbitrary continuous yes

Pipes and Filters filters pipes linear asynchronous linear continuous yes

Call and Return Architectural Styles

Main Program/Subroutines procedures static calls hierarchical sequential arbitrary sporadic no

Abstract Data Types managers static calls arbitrary sequential arbitrary sporadic yes

Objects managers dynamic calls arbitrary sequential arbitrary sporadic yes

Call-based Client Server programs remote calls star synchronous star sporadic yes

Layered calls hierarchical any hierarchical sporadic often

Independent Components Architectural Styles

Event Systems processes signals arbitrary asynchronous arbitrary sporadic yes

Communicating Processes processes messages arbitrary non-sequential arbitrary sporadic possibly

Data Centered Architectural Styles

Repository queries star asynchronous star sporadic possibly

Black-Board direct access star asynchronous star sporadic no

Control/Data
Interaction

memory,
computations

memory,
components

“Boxology” – Shaw & Clements“Boxology” – Shaw & Clements

29.4.18 Copyright © Ala Raabe 200886

Software Architecture
Kinds of Structures

Kind Structure Elements Relations Decisions Quality Attribute

Module
Structures

Decomposition Module sub-module-of
Decomposition, structuring,
information hiding, encapsulation Modifiability

Uses Module uses (requires)
Usable/useful sub-sets,
extensions

Extensibility,
Subsetability

Layers Layer
uses (requires),
provides
abstraction

Portability, ease of change and
abstraction “virtual machines” Portability

Class Class, Object
is-a (specializes),
instance-of, ...

Reuse, commonality and planned
incremental extension

Modifiability,
Extensibility

Data Model Data Entity
{one,many}-to-
{one,many}

Global data structures
consistency

Modifiability,
Performance

Component
& Connector
Structures

Service
Service, Bus,
Registry, ...

runs-concurrently,
excludes,
precedes, ...

Independent development of
components

Interopertability,
Modifiability

Concurrency Process, Thread can-run-parallel Parallelism, access to resources
Performance,
Availability

Allocation
Structures

Deployment
Component,
Hardware
Devices, ...

allocated-to,
migrates-to

Performance, security, availability Performance,
Security, Availability

Implementation Module, File
Structure, ...

stored-in Development, integration and
testing

Development
Efficiency

Work
Assignment

Module,
Organization
Unit, ...

assigned-to
Project management and
communication

Development
Efficiency

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201887

Using Architecture Styles
(R. N. Taylor, N. Medvidovic, E. M. Dashofy)

Architecture Style Summary Use it when Avoid it when

Call-and-Return

Main program &
subroutines

Main program controls
program execution,
calling
multiple subroutines

Application is small and simple Complex data structures needed
Future modifications likely

Object-Oriented
Objects encapsulate
state
and accessing functions

Close mapping between external entities
and internal objects is sensible
Many complex and interrelated
data structures

Application is distributed in a
heterogeneous network
Strong independence between
components necessary
High performance required

Layered (Tiered)

Abstract Machines
Virtual machine, or a
layer, offers services to
layers above it

Many applications can be based upon a
single, common layer of services
Interface service specification
resilient when implementation of a layer
must change

Many levels are required (causes
inefficiency)
Data structures must be accessed from
multiple layers

Client-Server Clients request service
from a server

Centralization of computation
and data at a single location (the server)
promotes manageability and scalability;
end-user processing limited to data entry
and presentation

Centrality presents a single-point-of-failure
risk; Network bandwidth limited; Client
machine cap abilities rival or exceed the
server’s

Data-Flow

Batch Sequential
Separate programs
executed sequentially,
with batched input

Problem easily formulated as a set of
sequential, severable steps

Interactivity or concurrency between
components necessary or desirable
Random-access to data required

Pipe-and-Filter

Separate programs,
a.k.a. filters, executed,
potentially concurrently.
Pipes route data streams
between filters

As with batch-sequential, filters are
useful in more than one application
Data structures easily serializable

Interaction between components required
Exchange of complex data structures
between components required

29.4.18 Copyright © Alar Raabe 201888

Using Architecture Styles
(R. N. Taylor, N. Medvidovic, E. M. Dashofy)

Architecture Style Summary Use it when Avoid it when

Data-Centered (Shared Memory)

Blackboard

Independent programs,
access and communicate
exclusively through a
global repository known
as backboard

All calculation centers on a common,
changing data structure; order of
processing dynamically determined and
data-driven

Programs deal with independent parts of
the common data
Interface to common data susceptible to
change
When interactions between the
independent programs require complex
regulation

Virtual Machines

Interpreter

Interpreter parses and
executes the input
stream, updating the
state maintained by the
interpreter

Highly dynamic behavior required
High degree of end-user customizability High performance required

Mobile Code
Code is mobile, that is, it
is executed in a remote
host

When it is more efficient to move
processing to a data-set than the data-
set to processing
When it is desirable to dynamically
customize a local processing node
through inclusion of external code

Security of mobile code cannot be
assured,or sand-boxed
When tight control of versions of deployed
software is required

Implicit Invocation

Publish-Subscribe Publishers broadcast
messages to subscribers

Components are very loosely coupled
Subscription data is small and efficiently
transported

When middle-ware to support high-volume
data is unavailable

Event-Based

Independent components
aynchronously emit and
receive events
communicated over event
buses

Components are concurrent and
independent
Components heterogeneous and
network-distributed

Guarantees on real-time processing of
events is required

29.4.18 Copyright © Alar Raabe 201889

Using Architecture Styles
(R. N. Taylor, N. Medvidovic, E. M. Dashofy)

Architecture Style Summary Use it when Avoid it when

Peer-to-Peer

Peer-to-peer
Peers hold state and
behavior and can act as
both clients and servers

Peers are distributed in a network, can be
heterogeneous and mutually independent
Robust in face of independent failures
Highly scalable

Trustworthiness of independent peers
cannot be assured or managed
Resource discovery inefficient without
designated nodes

Complex Styles

C2
Layered network of
concurrent components
communicating by events

When independence from substrate
technologies required
Heterogeneous applications
When support for product-lines desired

When high-performance across many layers
required
When multiple threads are inefficient

Distributed Objects Objects instantiated on
different hosts

Objective is to preserve illusion of location-
transparency

When high overhead of supporting middle-
ware is excessive
When network properties are unmaskable,
in practical terms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	What is a Software Architectural Style
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Different Architectures – Different Properties
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Deriving REST from Constituents
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

