
Software (Systems)
Architecture Foundations

Lecture #3
Documenting Architecture

Alar Raabe

29.4.18 Copyright © Alar Raabe 20182

Recap of Last Lecture

• Architectural structures can embody decisions how the system
– is to be structured as a set of code or data units that have to be constructed

or procured
– is to be structured as a set of elements that have run-time behavior –

(components) and interactions (connectors)
– will relate to non-software structures in its environment

• Architecture Style
– characterizes a family or a class of system architectures that are related by

shared structural and semantic properties

– is defined by
• a vocabulary of design elements
• design rules, or constraints (incl. topology)
• semantic interpretation
• analyses that can be performed on systems built in that style

A coherent package of pre-made design
decisions that provide a set of properties

A coherent package of pre-made design
decisions that provide a set of properties

29.4.18 Copyright © Alar Raabe 20183

Recap of Last Lecture

• Usage of Architecture Styles Supports
– Design Reuse – well-understood solutions can be applied to new problems

– Code Reuse – shared implementations of invariant aspects of a style

– Understandability of System Organization – e.g. meaning of “client-server”

– Interoperability – supported by style standardization

– Style-Specific Analysis – enabled by the constrained design space

– Visualizations – style-specific descriptions matching engineer’s mental models (e.g.
stack diagrams for layers)

• Main Architecture Styles can and must be combined

– to achieve the required properties of interest

– to match the problem structures (e.g. ways of decomposition) or problem nature

– by mixing styles, using hierarchical decomposition or conforming architecture elements
to multiple styles

A coherent package of pre-made design
decisions that provide a set of properties

A coherent package of pre-made design
decisions that provide a set of properties

29.4.18 Copyright © Alar Raabe 20184

Content

• Why to Document Architecture

• CMU SEI – “Views & Beyond” Method
– Module Views
– Component-and-Connector Views
– Allocation Views
– Advanced techniques

• Some other Architecture Documentation Methods

• Other Architecture Documentation Practices
– Architecture Description Languages

– Documenting Architecture in Code

• Conclusions

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

29.4.18 Copyright © Alar Raabe 20185

Simple & Unimportant vs. Complex & Important
 Built by One vs. Built by Many

Pictures © Wikipedia & Wikimedia Commons

29.4.18 Copyright © Alar Raabe 20186

Many people, same goal →

need for Common Language

• And the Lord said,
‘Look, they are one people,
and they have all one
language; and this is only the
beginning of what they will do;
nothing that they propose
to do will now be
impossible for them.

– Genesis 11.6

Picture © Wikipedia & Wikimedia Commons

29.4.18 Copyright © Alar Raabe 20187

Complex Object Requires many Views

Picture © Wikipedia & Wikimedia Commons

29.4.18 Copyright © Alar Raabe 20188

Boxes and Arrows – What they Mean?

C 1 C 2
P

• What does this mean?
– C1 calls C2
– Data flows from C1 to C2
– C1 instantiates C2
– C1 sends a message to C2
– C1 is a subtype of C2 (usually C2 would be positioned above C1, but that is not

mandatory)
– C2 is a data repository and C1 is writing data to C2
– C1 is a repository and C2 is reading data from C1

80% of time during maintenance
is spent in design-rediscovery

Davidson (2002)

80% of time during maintenance
is spent in design-rediscovery

Davidson (2002)

29.4.18 Copyright © Alar Raabe 20189

Illustration vs. Drawing/Documentation

Picture © The Frank Lloyd Wright Foundation

29.4.18 Copyright © Alar Raabe 201811

Documenting Architecture

• Creating an architecture is not enough –

it has to be communicated properly to

let others use it properly to do their jobs

• Architecture documentation is for
– communication – primary communication vehicle between stakeholders
– education – introducing new people to the system
– designing – provides structure for design decisions
– analyzing – provides information to analyze the system properties (quality attributes)

– constructing – tells what to implement (must contain models to support automated
construction)

Designing an architecture without
documenting it, is like winking at a girl
in the dark – you know what you´re
doing, but nobody else does

E. Woods

Designing an architecture without
documenting it, is like winking at a girl
in the dark – you know what you´re
doing, but nobody else does

E. Woods

Specification – architecture rendered in a formal language

Representation – a model, an abstraction of an architecture

Specification – architecture rendered in a formal language

Representation – a model, an abstraction of an architecture

29.4.18 Copyright © Alar Raabe 201812

Purpose of Architecture Documentation
for Different Stakeholders

• Business Manager
– understanding the ability of selected architecture to meet business goals

• Customer
– assuring that required functionality and quality will be delivered
– estimating cost and deliveries and following up progress of development

• Analyst
– analyzing satisfaction of quality attribute requirements

• Architect
– making trade-offs between conflicting requirements and design approaches
– recording design decisions and providing evidence that the architecture satisfies the requirements

• Designer
– understanding the context of their part of the system and its interactions with other parts

• Developer / Implementer
– understanding the constraints on development

• Tester / Quality Assurer
– assuring that implementation has been faithful to the architectural prescription
– creating test plans and tests

• Maintainer
– understanding how to deploy and operate
– understanding the effects of change

To record and communicate our
knowledge and decisions about
the software system architecture

To record and communicate our
knowledge and decisions about
the software system architecture

29.4.18 Copyright © Alar Raabe 201813

Documenting an Architecture

• Documenting an architecture is a matter of
documenting the relevant views and then adding
documentation that applies to more than one view

• Rules for Sound Documentation
– Write Documentation from the Reader’s Point of View
– Avoid Unnecessary Repetition
– Avoid Ambiguity
– Use a Standard Organization
– Record Rationale
– Keep Documentation Current But Not Too Current
– Review Documentation for Fitness of Purpose

• For systems that change fast
– Document what is true about all versions of your system
– Document the ways the architecture is allowed to change
– Make your system capture its own architecture-of-the-moment automatically

Software can be described by
many structures, not just one

D. Parnas

Software can be described by
many structures, not just one

D. Parnas

29.4.18 Copyright © Alar Raabe 201814

Content

• Why to Document Architecture

• CMU SEI – “Views & Beyond” Method
– Module Views
– Component-and-Connector Views
– Allocation Views
– Advanced techniques

• Some other Architecture Documentation Methods

• Other Architecture Documentation Practices
– Architecture Description Languages

– Documenting Architecture in Code

• Conclusions

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

29.4.18 Copyright © Alar Raabe 201815

“Views & Beyond”

• Method

1. Finding out what stakeholders need
(to avoid creating documentation that may serve no one)

2. Providing the information to satisfy those needs by recording design decisions
according to a variety of views, plus the beyond-view information

• how system is structured as a set of implementation units
• how system structured as a set of elements that have run-time behavior and interactions
• how software system relates to non-software structures in its environment

3. Checking the resulting documentation to see if it satisfied the needs

4. Packaging the information in a useful form to its stakeholders

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201816

Three Categories of Views – Viewpoints
(according to three kinds of structures)

• Module viewpoint
– introduces a specific set of module types and specifies rules about how elements of

those types can be combined

• Component-and-connector viewpoint
– introduces a specific set of component and connector types and specifies rules

about how elements of those types can be combined
– given that C&C views capture run-time aspects of a system, a C&C style is typically

also associated with a computational model that prescribes how data and control
flow through systems designed in that style

• Allocation viewpoint
– describes the mapping of software units to elements of an environment in which the

software is developed or executes

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201817

The Module Viewpoint
Overview

• Way to document the modular structures of software system
– the way in which software is decomposed into manageable units of responsibilities
– documentation package of any software system must include at least one view in the module

viewpoint

• A module is a code unit that implements a set of responsibilities – a principal
implementation unit (e.g. a class, a collection of classes, a layer, or any other code unit)

• Modules can be decomposed into modules

• Modules have
– Properties

• express important info about module
• constraints imposed on the module

– Interfaces (what is available to other modules)
– Relations to each other (no cycles allowed)

CMU SEI Views & BeyondCMU SEI Views & Beyond

Pictures © CMU SEI & Pearson Education, Inc.

29.4.18 Copyright © Alar Raabe 201818

The Module Viewpoint
Summary

• Elements
– Modules – implementation units of software that provide a coherent set of responsibilities

– Interfaces – boundaries across which two independent entities meet and interact or communicate

• Relations
– Is part of – a relationship between the sub-module (part) and the aggregate module (whole)

– Depends on – a dependency relationship between two modules (specific module styles elaborate
what dependency is meant)

– Is a – a generalization/specialization relationship between a more specific module (child) and a
more general module (parent)

• Purpose
– Explains the functionality of the system and the structure of the code base

– Facilitates impact analysis

– Supports requirements traceability analysis

– Provides blueprint for construction of the code, supports planning incremental development, and
definition of work assignments, implementation schedules, and budget information

– Shows the structure of information to be persisted (data model)

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201819

The Module View
Notation in UML

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

Interface is an element connecting two or
more other elements, defining how these
interact and what data is exchanged

Interface is an element connecting two or
more other elements, defining how these
interact and what data is exchanged

29.4.18 Copyright © Alar Raabe 201820

Module Viewpoint – Different Styles

• Decomposition style –
shows source code
structure as decomposition
hierarchy of modules

– each module can only have
one parent

• Generalization style –
shows which module is a
generalization of the other
(describes commonality)

– modules can be abstract
(with incomplete
implementation)

• Aspects style – shows
special modules, called
aspects, responsible for
crosscutting concerns
(supports modifiability)

– aspects may not crosscut
themselves

• Uses style – shows how
modules depend on one
another (for performing
change-impact analysis and
supports incremental
development)

• Layered style – divides a
system into groups of modules
that provide cohesive
responsibilities (layers) and
relate to each other
unidirectionally by the allowed-
to-use relation (supports
portability and modifiability)

– each module allocated to
exactly one layer; at least two
layers

• Data model style – describes
the structure of the data used in
the system in terms of data
entities and their relationships

– avoid functional dependencies

CMU SEI Views & BeyondCMU SEI Views & Beyond

Pictures © CMU SEI & Pearson Education, Inc.

29.4.18 Copyright © Alar Raabe 201822

Module Viewpoint
Layered Style – Diagram Variants

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201823

Module Viewpoint
Aspect Style

• Crosscutting concerns

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201824

Module Viewpoint
Data Model Style

• Documentation of different stages of the data model evolution
– Conceptual – the conceptual data model abstracts implementation details and focuses

on the entities and their relationships as
perceived in the problem domain

– Logical – the logical data model is an evolution of the conceptual data model toward a
data management technology
(such as relational databases)

– Physical – the physical data model is concerned with the implementation of the data
entities. It incorporates optimizations that may include partitioning or merging entities,
duplicating data, and creating identification keys and indexes

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201825

Module Viewpoint
Data Model Notations

• Entity Relationship Diagram (ERD) Variations
– Peter Chen’s entity-relationship diagram

notation (Chen 1976)
– Crow’s foot entity-relationship diagram notation
– IDEF1X

• UML class diagram

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201826

The Component-and-Connector Viewpoint
Overview

CMU SEI Views & BeyondCMU SEI Views & Beyond

• Component-and-connector views describe
– structures consisting of elements that have run-time presence (processes, components, data stores, ...)
– the pathways of interaction (communication links/protocols, data flows, access to shared storage, …)

• Component-and-connector views show instances, not types
– style-specific types are defined in a style guide and application specific types are described in the view

documentation

• Components have interfaces, called ports and connectors have interfaces, called roles –
attachments can be made only between compatible ports and roles

• Components can be attached only to connectors,
not other components an vice versa

• Connectors
– may have more than two roles (need not be binary)
– cannot appear in isolation, they must be attached to a component
– can, and often do, represent complex forms of interaction

Pictures © CMU SEI & Pearson Education, Inc.

29.4.18 Copyright © Alar Raabe 201827

The Component-and-Connector Viewpoint
Summary

• Elements
– Components – principal processing units and data stores with a set of ports
– Connectors – pathways of interaction between components with a set of roles

• Relations
– Attachments – component ports are associated with connector roles to yield a graph of

components and connectors
– Interface delegation – in some situations component ports are associated with one or more ports in

an “internal” sub-architecture; similarly for the roles of a connector

• Purpose
– Shows how the system works

• system’s principal executing components, and their interactions, principal data-stores, changes of structure
during execution

– Guides development and deployment by specifying the structure and behavior of run-time elements
• used protocols of interactions, which parts of the system are replicated, how does data flow through the

system, what parts of the system run in parallel

– Helps to reason about run-time system quality attributes, such as performance, reliability, and
availability

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201828

The Component-and-Connector Viewpoint
Notation in UML

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

Architecture elements can have both
provided and required interfaces

Architecture elements can have both
provided and required interfaces

29.4.18 Copyright © Alar Raabe 201829

The Component-and-Connector Viewpoint
Notation in UML

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201830

The Component-and-Connector Viewpoint
Connection to other Views

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201831

The Component-and-Connector Viewpoint
Checklist

• Define component-and-connector element and connector types according to the elements of
architectural style (e.g. data flow, call-return, event-based, repository, etc.)

• Always show a component’s ports explicitly and always attach a connector to a port of a component, not
directly to a component (if it is not clear that it is valid to attach a given port with a given role, provide a
justification in the rationale section for the view)

• Make clear which ports are used to connect the system to its external environment

• Data flow and control flow models are best thought of as projections of component-and-connector views,
but they are not views because the arrows represent usage of the connectors (which define more
completely the components’ interactions)

• Show the mapping between components in a component-and-connector view and their respective
implementation units in module views (in general, this is many-to-many mapping)

• For components that run as concurrent processes or threads, it’s important to document how these
processes or threads are scheduled or preempted, and how access to shared resources is synchronized

• Component-and-connector views can be structured in tiers – which are logical groupings of components

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201832

Component-and-Connector View
Example

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201833

The Allocation Viewpoint
Overview

• Describes mapping of software units to elements of environment
(e.g. hardware, file systems or development teams)

• Elements
– Software element

(with properties required of the environment)
– Environmental element

(with properties provided to the software)

• Relations
– Allocated-to – a software element is

mapped (allocated to) an environmental
element (properties are dependent on
the particular style)

• Purpose
– Shows the tools and environments in which the software is developed
– Helps to carry out various tasks (edit, build, package, deploy, configure, ...)
– Supports analyzing performance, availability, reliability, security and run-time dependencies
– Helps planning and managing resource allocations, assigning responsibilities
– Basis for work breakdown structures and for budget and schedule estimates

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201834

Allocation Viewpoint Styles

• Deployment style – maps components and
connectors to the hardware elements

– allocation topology is unrestricted, but the required
properties of the software must be satisfied by the
provided properties of the hardware

• Install style – maps components to a file system in the
production environment

– files and folders are organized in a tree structure, follows
an is-contained-in relation

CMU SEI Views & BeyondCMU SEI Views & Beyond

Pictures © CMU SEI & Pearson Education, Inc.

29.4.18 Copyright © Alar Raabe 201835

Allocation Viewpoint
Install Style Notation in UML

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201836

Allocation Viewpoint Styles

• Work assignment style – maps modules to development teams (describes responsibilities for
elements of the work-breakdown structure)

– usually one module is allocated to one organizational unit
– ways of work assignment

• platform(s) – reusable core assets vs.applications
• competence-centers – work is allocated depending

on the technical or domain expertise
• open-source style – many independent contributors with

common integration strategy
• process-steps – work is allocated according to the

phases of the software development process)
• release-based – different releases are allocated to

different teams

• Implementation style – (similar to install style) maps modules to a development infrastructure

• Data stores style – (similar to deployment style) maps data entities to the hardware of the data
servers (e.g. distribution of tables to servers, geographic distribution of the databases, data
warehouses and the data stores that feed them)

• Coordination style – to align the architecture and the development organization by representing
complexity and uncertainty in the communications (e.g. Communication Capacity Matrix (CCM))

CMU SEI Views & BeyondCMU SEI Views & Beyond

Pictures © CMU SEI & Pearson Education, Inc.

29.4.18 Copyright © Alar Raabe 201837

Beyond the Views

• Documenting context diagrams
– A context diagram establishes the boundaries for the information

contained in a view (“context” means an environment with which
the part of the system interacts)

– A top-level context diagram
• is a context diagram in which the scope is the entire system – it defines

what is and is not in the system, thus setting limits on the architect’s tasks
• makes a good first introduction to a system

• Documenting variation points
– Some architectures provide built-in variation points to facilitate building a family of similar but

architecturally distinct systems, other architectures are dynamic, in that the systems they describe change
their basic structure while they are running

• Documenting architectural decisions
– Why we made architectural decisions the way we did is just as important as the results of those decisions

– how to record the rationale behind your design

• Combining views
– Prescribing a given set of rigidly partitioned views is naive; there are times and good reasons for

combining two or more views into a single combined view

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201838

Documenting Context Diagrams

• Describe the context of the system being developed using the vocabulary of
the view that you’re documenting

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201839

Documenting Context Diagrams in UML

• Combination of Use Case and Class diagrams

• Package diagram

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201840

Documenting Variation Points

• Need for variability
– some set of decisions has not yet been made, but options have been explored
– the architecture is prepared for envisioned future changes
– there’s need to provides basic functionality that can be extended easily
– the architecture is for a family/collection of systems and contains explicit places where

configurations and extensions to the reference architecture can occur

• Variation points should be documented in two ways
– their existence should be noted in the appropriate places throughout the view (primary

presentation, element catalog, context diagram, and so on) for the view in which they are visible
– the variation point should be explained in the view’s variability guide

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201841

Documenting Variation Points

• Description of the variation point
– What decision has been left open by this variation point should be meaningful to the stakeholders, e.g.

choosing different implementations results in different feature behavior)

• Available options and their effects
– What is the range of choices available to exercise this variation point and what are the effects of each

• Condition of applicability
– What conditions must be met for a variation point to apply

• The binding time of an option
– Possible binding times include design time, compile time, link time, or run-time

• How the option is exercised
– What has to be done to choose an option of the variation point (set a build-time parameter or replace

one implementation of a module with another) – this section is the “how-to” guide

• Dependencies among variation point options
– Does chosen option for one variation point, constrain other choices

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201842

Documenting Architectural Decisions

• Document the decision (and explain the reasoning that lies behind), if
– it has an important effect on the system (that will be difficult to undo)

– the design team spent significant time and effort evaluating options before making a decision

– the decision is complex or confusing (seems not to make sense at first)

– it seems unusual or unexpected (because these are very likely to be broken by mistake)

• Essential information about a key architectural decision
– Issue – architectural design issue being addressed by the decision

– Decision – the solution chosen

– Assumptions – based on which the decision is being made (cost, schedule, technology, …)

– Alternatives – alternative solutions/options considered

– Argument – describing why given alternative was selected (e.g implementation cost, total cost of
ownership, time to market, availability of development resources)

– Implications – describe the decision’s implications

– Related things
• other decisions, related requirements,

affected architecture elements and
external artifacts (e.g. budgets, schedules)

The life of a software architect is a long (and
sometimes painful) succession of sub-optimal
decisions made partly in the dark

P. Kruchten

The life of a software architect is a long (and
sometimes painful) succession of sub-optimal
decisions made partly in the dark

P. Kruchten

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201843

Documenting Architectural Decisions
Classification

• Kinds of Architectural Design Decisions
– Existence Decisions (ontocrises)

• Structural and Behavioral decisions

– Ban or non-existence decisions (anticrises)
– Property Decisions (diacrises)

• Constraints, Design rules, and Guidelines

– Executive Decisions (pericrises)
• Organizational, Process (methodological),

Technology and Tool decisions

• Attributes of Architectural Design Decisions
– Epitome (the Decision itself)
– Rationale (“why”)
– Scope
– State (idea, rejected, tentative/challenged,

decided, approved)
– Author, Time-Stamp, History
– Categories (usability, security, …)
– Cost, Risk

P. Kruchten (2004)P. Kruchten (2004)

• Relationships between Architectural Design
Decisions

– Constraints
– Forbids (Excludes)
– Enables
– Subsumes
– Conflicts with (mutually excluding)
– Overrides
– Comprises (is made of, decomposes into)
– Is bound to (strong)
– Is an alternative to
– Is related to (weak)
– Dependencies

• Relationship with External Artifacts
– Traces to
– Does not comply with

29.4.18 Copyright © Alar Raabe 201844

Combining the Views

• A combined view is a view that contains elements and relations that come from two or
more other views

• An overlay is a view that combines the primary
presentations of two or more views followed by
supporting documentation for that combined
primary presentation

• A hybrid style is the
combination of two or
more existing styles

(element and relation
types of the constituent
styles can “meld” into
new types with new
properties)

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201845

Combining the Views
Example

decomposition-
uses-
generalization

combined view

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201846

Combining the Views
Example

multi-tier
client-server
deployment

combined
view

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201847

Descriptive Completeness

• There may be good reasons to omit some details from
architecture descriptions

• Refinement – gradual disclosure of more-detailed information
– decomposition refinement reveals internal substructure
– implementation refinement replaces elements with different, more

implementation specific elements

• Documentation may or may not show all elements and
relations

– when some elements and relations are suppressed, the view
documentation should make it clear to the reader

• use ellipses (“…”) to indicate that there are other elements
• use a comment box in the diagram to explain that not all elements

are being exhibited

– why omit some elements and relations in a view
• it’s early in the design – all things are not yet known
• want to focus on the most important parts of the view

(reduce clutter in diagrams)

CMU SEI Views & BeyondCMU SEI Views & Beyond

Pictures © CMU SEI & Pearson Education, Inc.

29.4.18 Copyright © Alar Raabe 201848

Advanced Techniques

• Documenting Software Interfaces

• Documenting Behavior

• Requirements Viewpoint

• Choosing the Views

• Building the Documentation Package

• Architecture Overview Presentation

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201849

Documenting Software Interfaces

• An interface is a boundary across which two elements meet and interact or
communicate with each other

• An interface document is a specification of what an architect chooses to make publicly
known about an element in order for other entities to interact or communicate with it

• A resource of an interface represents a
function, method, data stream, global
variable, message end point, event trigger,
or any addressable facility within that
interface

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201850

Some Principles about Interfaces

• All elements have interfaces
– All software elements described in any view interact with their environment – architect decides what to document

• An element’s interface is separate from its implementation

• An element can have multiple interfaces
– Each interface contains a separate collection of resources (functions, data, message end points, event triggers, ...) that

have a related logical purpose, or represent a role that the element could fulfill
– Multiple interfaces provide a separation of concerns – a specific actor might require only a subset of the resources
– Evolution can be supported by keeping the old interface and adding a new one

• Elements not only provide interfaces but also require interfaces
– An element interacts with its environment by making use of resources or assuming that its environment behaves in a

certain way – without these required resources, the element cannot function correctly

• Multiple actors may interact with an element through its interface at the same time (if interface allows multiple
concurrent interactions)

• Interfaces can be extended by generalization
– Examples of resources often shared by several interfaces include: an initialization operation, a set of exceptions, …

• Sometimes it’s useful to distinguish interface types from interface instances in the architecture (if components
can provide multiple instances of the same interface)

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201851

Documenting Behavior

• What to document
– The ordering of interactions among the elements

– Opportunities for concurrency

– Time dependencies of interactions

– Possible states of the system or parts of the system

– Usage patterns for different system
resources

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201852

Documenting Behavior in UML

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

Use Case diagrams

Sequence diagramsCommunication diagrams

29.4.18 Copyright © Alar Raabe 201854

Documenting Behavior in UML

• Activity diagrams

• State Machine
diagrams

– comprehensive model to show the
complete behavior of structural
element – it is possible to infer all
possible paths from initial state to
final state

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201856

Documenting Behavior
Summary

• Documenting behavior adds semantic detail to elements and their interactions that have time-related
characteristics

– behavioral models complement structural models by adding information that reveals ordering of interactions
among the elements, opportunities for concurrency, and time dependencies of interactions

• Use various types of behavior documentation together
a) begin by documenting an overview of the functional

requirements as use case diagrams

b) then produce use case descriptions to document the
events and actions that correspond to performing each use case

c) next, for each use case produce either a sequence diagram or a communication diagram to define the
messages between envisioned architecture elements

d) finally, produce state-charts to complement the behavior documentation of the elements that have elaborate
states and state transitions

• Behavior can be documented in the
– element catalog of a view

– interface documentation, as the element’s externally visible behavior (used to explain the effects of a
particular usage pattern)

– design background section, which includes results of analyses (as behavior descriptions are often a basis for
analysis)

CMU SEI Views & BeyondCMU SEI Views & Beyond

Pictures © CMU SEI & Pearson Education, Inc.

29.4.18 Copyright © Alar Raabe 201857

Documenting Mapping to Requirements

• Showing how the architecture satisfies requirements is an important part of the
documentation

• This helps to validate the architecture by showing that
– No requirement was forgotten
– No requirement was contradicted
– Every architectural decision is either predicated on at least one requirement

• To facilitate validation, document a mapping between architectural decisions and
requirements

– Put the mapping in a single place in the documentation – a new section in the documentation
beyond views (good for informal or fluid requirements or if fine-grained accounting of each
requirement is not needed)

– Distribute the mapping throughout the architecture documentation – add a separate section
to each view (good for fine-grained requirements that map to fine-grained architectural
decisions)

– Capture the mapping to requirements in a view of its own – according to “Requirements
Viewpoint”

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201858

Requirements Viewpoint

Pictures © CMU SEI & Pearson Education, Inc.

P. Eeles, P. Cripps (2009)P. Eeles, P. Cripps (2009)

• The requirements view (based on this viewpoint) describes
requirements that have shaped the architecture (may include
functional requirements, quality attribute requirements, and
constraints)

• If requirements are viewed as
– “structure” in the software’s environment, a mapping to

requirements could be considered a kind of allocation style, and
documented as a kind of allocation view

– a set of concerns that crosscut the architecture elements, a
mapping to requirements could be considered a kind of aspect
view (good for projects with fine-grained requirements that map to
multiple architectural decisions or elements)

• The value of a requirements view, is not confined to the
identification of the subset of requirements that are deemed to
be architecturally significant

• The architecture description as a whole should explicitly define
how the architecture addresses each of these requirements

29.4.18 Copyright © Alar Raabe 201859

Choosing the Views

• Usability
– a decomposition view to analyze information

presented to the user, and assign
responsibility for usability-related operations

– a component-and-connector view to enable
analysis of cancellation possibilities, failure
recovery, etc.

• Performance
– component-and-connector view to support

execution tracking (performance modeling)
– additionally deployment view, behavior

documentation

• Modifiability
– a uses view and a decomposition view to

show dependencies (will help with impact
analysis)

– a component-and-connector view is needed
to reason about the run-time effects of a
proposed change

CMU SEI Views & BeyondCMU SEI Views & Beyond

• Security (generally same information as needed
for the performance analysis)

– a deployment view and context diagrams to see
outside connections

– a component-and-connector view to show data
flow and security controls

– a decomposition view to find where authentication
and integrity concerns are handled

• Availability
– a component-and-connector view to analyze for

deadlock, synchronization and data consistency
problems, and show how redundancy, fail-over,
and other availability mechanisms work

– a deployment view to show possible points of
failure and backups

• Accuracy
– a component-and-connector view showing flow

and transformation of data (helps identify places
where computations can degrade accuracy)

29.4.18 Copyright © Alar Raabe 201860

Building the Documentation Package

• Document the relevant views, then add documentation that applies to more than one view

• What views you choose depends on
– who the important stakeholders are
– what structures are present in the architecture
– budget, schedule and what skills are available

• Choose at least one view of each of the three different viewpoints
– combine some views to reduce the number of views to create, keep consistent, and maintain

• Variations
– document how to use the architecture – the “use cases” for the architecture
– document the major design approaches taken – a major “motif” or “pattern”
– make a single element catalog for the whole architecture – because elements appear in more than one view
– add a section to record open questions

• Document a Mapping to Requirements
– to validate the architecture by showing that no requirement was forgotten, no requirement was contradicted,

and every architectural decision is predicated on at least one requirement

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201861

Documentation Package
Documenting a View

• The primary presentation
– the summary of most important information about the system
– includes the primary elements and relations (or part of those)

– often graphical (a diagram), but might be textual (table or list)

• The element catalog
– elements in the view and their properties
– relations (not all the relations are shown) and their properties

– element interfaces
– element behavior (if elements have complex interactions)

• A context diagram shows how the system or portion of the
system depicted in this view relates to its environment

• A variability guide shows how to exercise any variation
points that are a part of the architecture shown in this view

• Rationale explains the reason for the design reflected in the
view (provides a convincing argument that it is sound)

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201862

Documentation Package
Outside of Views

• Documentation Roadmap – what information is in the documentation and where to find it

• How a View Is Documented – explain the standard organization you’re using to
document views

• System Overview
– a short description of the system’s

function, its users, and any important
background or constraints

– provides readers with a consistent
mental model of the system and its purpose

• Mapping Between Views
– to understand the associations between views

• Rationale
– documents the architectural decisions that apply to more than one view

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

D
oc

um
en

ta
tio

n
≠

Si
ng

le
 D

oc
um

en
t

D
oc

um
en

ta
tio

n
≠

Si
ng

le
 D

oc
um

en
t

29.4.18 Copyright © Alar Raabe 201863

Architecture Overview Presentation
Outline for One-Hour Overview (20-35 slides)

• Problem statement (2–3 slides) – the problem the system is trying to solve
– Driving architecture requirements, measurable quantities associated with these, and approaches for meeting these
– Technical constraints (operating system, hardware, or platform software)

• Architecture strategy (2 slides) – the major architecture challenges
– The architecture approaches, styles, patterns, or mechanisms used (what quality attributes they address and how)

• System context (1–2 slides)
– One or two whole-system context diagrams that clearly show the system boundaries and other systems with which

it must interact

• Architecture views (12–18 slides)
– Chosen views (at least one module, one component-and-connector, and one allocation view) – for each, include

the top-level (system wide) primary presentation and, if needed, few refined primary presentations (include a
notation key)

• How the architecture works (3–10 slides)
– Up to three of the most important use cases (if possible, include the run-time resources consumed for each)
– Show the architecture’s capacity for growth with up to three of the most important change scenarios (describe the

change impact)

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201864

Content

• Why to Document Architecture

• CMU SEI – “Views & Beyond” Method
– Module Views
– Component-and-Connector Views
– Allocation Views
– Advanced techniques

• Some other Architecture Documentation Methods

• Other Architecture Documentation Practices
– Architecture Description Languages

– Documenting Architecture in Code

• Conclusions

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

29.4.18 Copyright © Ala Raabe 200865

Rational Unified Process (RUP) “Five-View Approach”
(based on P. Kruchten “4+1 Views”)

1. Logical view captures the functional requirements (what the system should provide in terms of
services to its users)

2. Process view documents the tasks (processes and threads) involved, takes into account some
non-functional requirements, and addresses issues of concurrency and distribution

3. Development view focuses on the actual software module organization in the software
development environment

4. Physical (deployment) view documents the various physical nodes for the most typical platform
configurations and takes into account primarily the non-functional requirements of the system

5. Scenarios (use case) view
documents architecturally
significant behavior

• the system’s intended functions and
its environment

• a contract between the customer and
the developers and as a design check
on the other views

• to discover the architectural elements
during the architecture design and to
validate architecture

Scenarios

Development View
(programmers)

 Software management

Logical View
(end-users)

 Functionality

Process View
(system integrators)

 Performance
 Scalability
 Throughput

Physical View
(system engineers)

 System topology
 Delivery
 Installation
 Telecommunication

29.4.18 Copyright © Ala Raabe 200866

Siemens “Four Views”

• Conceptual View
– explains how the system's functionality is mapped to components and connectors

• Module View
– explains how the components, connectors, ports, and roles are mapped to abstract modules

and their interfaces

• Execution View
– explains how the system's functionality

is mapped to run-time platform elements,
such as processes and shared libraries

– platform elements consume platform
resources that are assigned to a
hardware resource

• Code View
– explains how the software implementing the system is organized into source and deployment

components

Pictures © CMU SEI & Pearson Education, Inc.

29.4.18 Copyright © Ala Raabe 200867

Rozanski and Woods Viewpoint Set

• Functional view documents the system’s functional elements, their responsibilities, interfaces, and
primary interactions – cornerstone of most architecture documents (drives system structures)

• Information view documents the way that the architecture stores,
manipulates, manages, and distributes information (static data
structure and information flow)

• Concurrency view describes the concurrency structure of the
system and maps functional elements to the parts of the system
that can execute concurrently (process and thread structures
and the inter-process communication mechanisms)

• Development view describes the architecture that supports the
software development process

• Deployment view describes the environment into which the system will be deployed, including
capturing the dependencies the system has on its run-time environment

• Operational view describes how the system will be operated, administered, and supported when it
is running in its production environment

Pictures © CMU SEI & Pearson Education, Inc.

29.4.18 Copyright © Ala Raabe 200868

Comparison of Viewpoints
 in different Architecture Description Methods

CMU SEI RUP / Kruchten
4+1

Siemens
Four Views

Rozanski &
Woods UML Diagrams

Module Logical
Implementation Module Development

Information
Package
Class

Component-
and-Connector Process Conceptual

Functional
Concurrence
Information (flow)

Component
Object

Allocation Deployment Execution
Code

Deployment
Operational

Use Case
Deployment

Requirements

Behavior Scenarios

Use Case
Sequence
Communication
Activity
State Machine

29.4.18 Copyright © Alar Raabe 201869

Content

• Why to Document Architecture

• CMU SEI – “Views & Beyond” Method
– Module Views
– Component-and-Connector Views
– Allocation Views
– Advanced techniques

• Some other Architecture Documentation Methods

• Other Architecture Documentation Practices
– Architecture Description Languages

– Documenting Architecture in Code

• Conclusions

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

29.4.18 Copyright © Alar Raabe 201870

Architecture Description Languages

• An approach to formalize architecture descriptions and provide standardized
representation to support tools, analyzes, simulation and interchange

• Textual and/or graphical syntax and formally defined semantics

• Some ADLs
– Academic

• ACME (CMU)
• C2 (UCI)
• Wright (CMU)

– Standards
• AADL (SAE – Society of Automotive Engineers)
• SysML (OMG) extension of UML by

requirements & parametrics diagrams
• ArchiMate (OpenGroup) – for enterprise level

System simple_cs = {
 Component client = { Port send-request; };
 Component server = { Port receive-request; };
 Connector rpc = { Roles { caller, callee}};
 Attachments {
 client.send-request to rpc.caller;
 server.receive-request to rpc.callee;
 }
}

Pictures © OMG

29.4.18 Copyright © Alar Raabe 201873

Documenting Architecture in Code

• Use naming conventions according to the architectural elements – using vocabulary
of relevant architecture style (e.g. components, connectors, layers, ...)

• Organize/package source code into name-spaces and modules

• Use meta-info (annotations and attributes) to map software to the external structures

• Create internal Domain Specific Languages (fluent coding style – method chaining)
for expressing architecture structures directly in code (kind of ADL)

• Represent the architectural abstractions (both control and data) directly in code using
abstraction mechanisms of programming language

• Represent the domain model including the system environment in the source code

• Document the architectural decisions in source code comments

The source code is the design

J. W. Reeves

The source code is the design

J. W. Reeves

29.4.18 Copyright © Alar Raabe 201874

Content

• Why to Document Architecture

• CMU SEI – “Views & Beyond” Method
– Module Views
– Component-and-Connector Views
– Allocation Views
– Advanced techniques

• Some other Architecture Documentation Methods

• Other Architecture Documentation Practices
– Architecture Description Languages

– Documenting Architecture in Code

• Conclusions

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

29.4.18 Copyright © Alar Raabe 201875

Conclusions

• Creating an architecture is not enough –

it has to be communicated properly to

let others use it properly to do their jobs

• Architecture documentation is for
– communication – primary communication vehicle between stakeholders
– education – introducing new people to the system
– designing – provides structure for design decisions
– analyzing – provides information to analyze the system properties (quality attributes)
– constructing – tells what to implement (must contain models to support automated

construction)

• Write documentation
– from the reader’s point of view, for clear purpose and record rationale
– avoiding unnecessary repetition and ambiguity
– using a standard organization

Designing an architecture without
documenting it, is like winking at a girl
in the dark – you know what you´re
doing, but nobody else does

E. Woods

Designing an architecture without
documenting it, is like winking at a girl
in the dark – you know what you´re
doing, but nobody else does

E. Woods

29.4.18 Copyright © Alar Raabe 201876

Conclusions

• Document the relevant views (at least one per each major viewpoint), then add
documentation that applies to more than one view (combine some views to reduce
the number of views to create, keep consistent, and maintain)

• Choose the views depending on
– who the important stakeholders are and what are their concerns towards the system

– what structures are present in the architecture

– budget, schedule and what skills are available

• Additionally to the views
– document the major design decisions taken, how to use the architecture and the ways

architecture is allowed to change

– make a single element catalog for the whole architecture – because elements appear in
more than one view

– document a mapping to requirements, to show that no requirement was forgotten, nor
contradicted

– add a section to record open questions

Make your system capture its own
current architecture automatically

Make your system capture its own
current architecture automatically

29.4.18 Copyright © Alar Raabe 201877

Thank You!

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

29.4.18 Copyright © Alar Raabe 201878

Questions

• What’s the purpose of software architecture
documentation?

• Describe 3 major viewpoints (what they represent and
their purpose) in CMU SEI “Views & Beyond” method

• What contains a documentation of specific view in CMU
SEI method?

• List the specific view styles of 3 major viewpoints in
CMU SEI method and RUP / “4+1” method

• What UML models and diagrams you would use to
describe the views in 3 major viewpoints in CMU SEI
method?

• In which viewpoint in CMU SEI method are data models
used?

• How would you document the cross-cutting concerns?

• What is refinement?

• What is the purpose of Context Diagrams?

• How you would document variability?

• How you would document architectural decisions?

• Name different types of architectural decisions?

• How views can be combined?

• How you would document software interfaces?

• What UML models and diagrams can be used to
document behavior?

• How (based on what) you choose the views into the
architecture description?

• What is contained in the software architecture
documentation package?

• How you would represent architecture in the source
code?

29.4.18 Copyright © Alar Raabe 201879

Literature

• https://flylib.com/books/en/2.121.1/

• CMU SEI Library “Views and Beyond”:
– https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5019
– https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9685
– https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6497
– https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5939
– https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5847
– https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5471
– https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7095
– https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6997
– https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD – Example AD

• https://www.researchgate.net/publication/238381956_A_41_View_Model_of_Software_Architecture

• http://www.iso-architecture.org/ieee-1471/templates/

• http://www.rm-odp.net/

• http://www.lcc.uma.es/~av/download/UML4ODP_IS_V2.pdf

• http://www.cs.cmu.edu/%7Eacme/docs/language_overview.html

• http://www.aadl.info/aadl/currentsite/

• http://sysml.org/

• … Google “documenting software architecture” ...

29.4.18 Copyright © Alar Raabe 201880

Choosing the Views

Pictures © CMU SEI & Pearson Education, Inc.

CMU SEI Views & BeyondCMU SEI Views & Beyond

29.4.18 Copyright © Alar Raabe 201881

“Marketecture”

• A one page, typically informal depiction of the system’s structure and
interactions

• It shows the major components, their relationships and has a few well chosen
labels and text boxes that portray the design philosophies embodied in the
architecture

– A marketecture is an excellent vehicle for facilitating discussion by stakeholders
during design, build, review, and of course the sales process – it’s easy to
understand and explain, and serves as a starting point for deeper analysis

Essential Software Architecture

I. Gorton (2006)

Essential Software Architecture

I. Gorton (2006)

29.4.18 Copyright © Alar Raabe 201882

Quality Attributes in the Documentation

1. Any major design approach (such as an architecture pattern or style) chosen by the architect will have quality attribute
properties associated with it
• client-server → scalability, layering → portability, an information-hiding-based decomposition → modifiability, services →

interoperability, …
• explaining the choice of approach (rationale) includes a discussion about the satisfaction of quality attribute requirements and

trade-offs incurred

2. Individual architectural elements that provide a service often have quality attribute bounds assigned to them
• these quality attribute bounds are defined in the interface documentation for the elements, sometimes in the form of a Quality of

Service contract (or simply be recorded as properties that the elements exhibit)

3. Quality attributes often impart a “language” of things that you would look for
• security involves things like security levels, authenticated users, audit trails, firewalls, and the like
• performance brings to mind buffer capacities, deadlines, periods, event rates and distributions, clocks and timers, and so on
• availability conjures up mean time between failure, failover mechanisms, primary and secondary functionality, critical and

noncritical processes, and redundant elements

4. Architecture documentation often contains a mapping to requirements that shows how requirements (including quality
attribute requirements) are satisfied

5. Every quality attribute requirement will have a constituency of stakeholders who want to know that that quality attribute
requirement is going to be satisfied
• for these stakeholders, the architect should provide a special place in the documentation’s introduction that either provides what

the stakeholder is looking for or tells the stakeholder where in the document to find it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 54
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

