| I

Software (Systems)
Architecture Foundations

Lecture #3
Documenting Architecture

Alar Raabe

Recap of Last Lecture

A coherent package of pre-made design
decisions that provide a set of properties

« Architectural structures can embody decisions how the system
— is to be structured as a set of code or data units that have to be constructed
or procured
— is to be structured as a set of elements that have run-time behavior —
(components) and interactions (connectors)

— will relate to non-software structures in its environment

* Architecture Style

— characterizes a family or a class of system architectures that are related by
shared structural and semantic properties

— is defined by
« avocabulary of design elements
» design rules, or constraints (incl. topology)
« semantic interpretation
« analyses that can be performed on systems built in that style

2 29.4.18 Copyright © Alar Raabe 2018

Recap of Last Lecture

A coherent package of pre-made design
decisions that provide a set of properties

» Usage of Architecture Styles Supports
— Design Reuse — well-understood solutions can be applied to new problems
— Code Reuse — shared implementations of invariant aspects of a style
— Understandability of System Organization — e.g. meaning of “client-server”
— Interoperability — supported by style standardization
— Style-Specific Analysis — enabled by the constrained design space

— Visualizations — style-specific descriptions matching engineer’'s mental models (e.g.
stack diagrams for layers)

« Main Architecture Styles can and must be combined
— to achieve the required properties of interest
— to match the problem structures (e.g. ways of decomposition) or problem nature

— by mixing styles, using hierarchical decomposition or conforming architecture elements
to multiple styles

3 29.4.18 Copyright © Alar Raabe 2018

Content

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Why to Document Architecture
Lao Tsu (by Philippe Kruchten)

CMU SEI - “Views & Beyond” Method
— Module Views
— Component-and-Connector Views
— Allocation Views
— Advanced techniques

Some other Architecture Documentation Methods

Other Architecture Documentation Practices
— Architecture Description Languages
— Documenting Architecture in Code

Conclusions

4 29.4.18 Copyright © Alar Raabe 2018

Simple & Unimportant vs. Complex & Important
Built by One vs. iIt by Many

Pictures © Wikipedia & Wikimedia Commons

Copyright © Alar Raabe 2018

Many people, same goal —

need for Common Language

* And the Lord said,
‘Look, they are one people,
and they have all one
language; and this is only the
beginning of what they will do;
nothing that they propose
to do will now be
impossible for them.

— Genesis 11.6

Picture © Wikipedia & Wikimedia Commons

6 29.4.18 Copyright © Alar Raabe 2018

Complex Object Requires many Views

WASHNGTON AQUEDUCT

i e CABIN JOHN BRIDCE ;
sda = = — A : 3 e c = [: -
A S — B PSS P4 , e AT

Sl S

SCAFFOLDING

Scale #%of {inch {o oot
e e e

"

Ik X Jf]

N

|| AN RN v §

N, B
C 1)

[X

oo VB Tl

e

=5

Picture © Wikipedia & Wikimedia Commbns
7 29.4.18 Copyright © Alar Raabe 2018

Boxes and Arrows — What they Mean?

80% of time during maintenance
is spent in design-rediscovery

Davidson (2002)

C1 -— C?2

 What does this mean?
— C1calls C2
— Data flows from C1 to C2
— C1 instantiates C2
— C1 sends a message to C2

— C1 is a subtype of C2 (usually C2 would be positioned above C1, but that is not
mandatory)

— C2 is a data repository and C1 is writing data to C2
— C1is arepository and C2 is reading data from C1

8 29.4.18 Copyright © Alar Raabe 2018

lllustration vs. Drawing/Documentation

Picture © The Frank Lloyd Wright Foundation
9 29.4.18 Copyright © Alar Raabe 2018

Documenting Architecture

Designing an architecture without -
documenting it, is like winking at a girl
in the dark — you know what you're

« Creating an architecture is not enough — doing, but nobody else does

it has to be communicated properly to
let others use it properly to do their jobs

E. Woods

 Architecture documentation is for
— communication — primary communication vehicle between stakeholders
— education — introducing new people to the system
— designing — provides structure for design decisions
— analyzing — provides information to analyze the system properties (quality attributes)

— constructing — tells what to implement (must contain models to support automated
construction)

Specification — architecture rendered in a formal language
Representation — a model, an abstraction of an architecture

11 29.4.18 Copyright © Alar Raabe 2018

Purpose of Architecture Documentation
for Different Stakeholders

To record and communicate our
knowledge and decisions about
* Business Manager the software system architecture

— understanding the ability of selected architecture to meet business goais
+ Customer
— assuring that required functionality and quality will be delivered
— estimating cost and deliveries and following up progress of development
* Analyst
— analyzing satisfaction of quality attribute requirements
« Architect
— making trade-offs between conflicting requirements and design approaches
— recording design decisions and providing evidence that the architecture satisfies the requirements
* Designer
— understanding the context of their part of the system and its interactions with other parts
* Developer / Implementer
— understanding the constraints on development
* Tester / Quality Assurer
— assuring that implementation has been faithful to the architectural prescription
— creating test plans and tests
* Maintainer
— understanding how to deploy and operate
— understanding the effects of change
12 29.4.18 Copyright © Alar Raabe 2018

Documenting an Architecture

Software can be described by
many structures, not just one

* Documenting an architecture is a matter of D. Parnas

documenting the relevant views and then adding
documentation that applies to more than one view

* Rules for Sound Documentation
— Write Documentation from the Reader’s Point of View
— Avoid Unnecessary Repetition
— Avoid Ambiguity
— Use a Standard Organization
— Record Rationale
— Keep Documentation Current But Not Too Current
— Review Documentation for Fitness of Purpose

* For systems that change fast
— Document what is true about all versions of your system
— Document the ways the architecture is allowed to change
— Make your system capture its own architecture-of-the-moment automatically

13 29.4.18 Copyright © Alar Raabe 2018

14

Content

Why to Document Architecture

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

CMU SEI - “Views & Beyond” Method
— Module Views
— Component-and-Connector Views
— Allocation Views
— Advanced techniques

Some other Architecture Documentation Methods

Other Architecture Documentation Practices
— Architecture Description Languages
— Documenting Architecture in Code

Conclusions

29.4.18 Copyright © Alar Raabe 2018

“Views & Beyond”

CMU SEI Views & Beyond F

e Method

1. Finding out what stakeholders need
(to avoid creating documentation that may serve no one)

2. Providing the information to satisfy those needs by recording design decisions
according to a variety of views, plus the beyond-view information

* how system is structured as a set of implementation units
* how system structured as a set of elements that have run-time behavior and interactions

* how software system relates to non-software structures in its environment

3. Checking the resulting documentation to see if it satisfied the needs

4. Packaging the information in a useful form to its stakeholders

15 29.4.18 Copyright © Alar Raabe 2018

Three Categories of Views — Viewpoints
(according to three kinds of structures)
CMU SEI Views & Beyond F

 Module viewpoint
— introduces a specific set of module types and specifies rules about how elements of
those types can be combined

« Component-and-connector viewpoint

— introduces a specific set of component and connector types and specifies rules
about how elements of those types can be combined

— given that C&C views capture run-time aspects of a system, a C&C style is typically
also associated with a computational model that prescribes how data and control

flow through systems designed in that style

* Allocation viewpoint
— describes the mapping of software units to elements of an environment in which the
software is developed or executes

16 29.4.18 Copyright © Alar Raabe 2018

The Module Viewpoint
Overview

CMU SEI Views & Beyond F

« Way to document the modular structures of software system
— the way in which software is decomposed into manageable units of responsibilities

— documentation package of any software system must include at least one view in the module
viewpoint

A module is a code unit that implements a set of responsibilities — a principal
implementation unit (e.g. a class, a collection of classes, a layer, or any other code unit)

* Modules can be decomposed into modules ? ? Q o
(¢

— Properties
» express important info about module
+ constraints imposed on the module NG RN
— Interfaces (what is available to other modules) (a) (b)

— Relations to each other (no cycles allowed) Koy
D Module T Module interface

Pictures © CMU SEI & Pearson Education, Inc.
17 29.4.18 Copyright © Alar Raabe 2018

e N
* Modules have ? (f Cf ? ?
A B

The Module Viewpoint
Summary

CMU SEI Views & Beyond F

* Elements
— Modules — implementation units of software that provide a coherent set of responsibilities
— Interfaces — boundaries across which two independent entities meet and interact or communicate

* Relations
— Is part of — a relationship between the sub-module (part) and the aggregate module (whole)

— Depends on — a dependency relationship between two modules (specific module styles elaborate
what dependency is meant)

— Is a — a generalization/specialization relationship between a more specific module (child) and a
more general module (parent)

* Purpose
— Explains the functionality of the system and the structure of the code base
— Facilitates impact analysis
— Supports requirements traceability analysis

— Provides blueprint for construction of the code, supports planning incremental development, and
definition of work assignments, implementation schedules, and budget information

— Shows the structure of information to be persisted (data model)

18 29.4.18 Copyright © Alar Raabe 2018

The Module View
Notation in UML

CMU SEI Views & Beyond

1
CommonDialo abstract class
System.l0.Log package = (italics)
class with provided
PR | interface
aveFileDialog class UIElement |
|Animatable com.sun.ebank.web
SaveFileDialog] BRI
. clags showing . com.sun.ebank.web.taglib !
FileName attribute and : interface not . i
Fil . «interface» shown as is-part-of I depends-on
ilter operation e el ol relation cuser relation
. compartments ollipop I
ShowDialog() Vi
OnFileOk(...) _ Context
Dispatcher Listener BeanManager
«interfacen
[EEET Observer
Interface is an element connecting two or I two forms of
. is-a relation (class
more other elements, d_eflnlng how these | heritance and
interact and what data is exchanged | interface realization)
Checking Savings Admin
Account Account AccountView

Pictures © CMU SEI & Pearson Education, Inc.
19 29.4.18 Copyright © Alar Raabe 2018

Module Viewpoint — Different Styles

 Decomposition style —
shows source code
structure as decomposition
hierarchy of modules

— each module can only have
one parent

* Generalization style —
shows which module is a
generalization of the other
(describes commonality)

— modules can be abstract

(with incomplete
implementation)

+ Aspects style — shows
special modules, called
aspects, responsible for
crosscutting concerns
(supports modifiability)

— aspects may not crosscut
themselves

20 29.4.18

CMU SEI Views & Beyond

]
A User Interface 5 d
ata
B ¢ 1 1 ey Access
A B | 7
D 1 lee>
E «usen
e ﬁ
Notation: UML
A
q A L]
° B1 B2 B3
Notation: UML Shape €
Polygon Circle Spline . s
Employeem>+ — — — — — — — — — — — O+ Department
«aspect»

TransactionManagement

<
'

\
1

@transactional annotation

Crosscuts calls to any operation
within an EJB that contains the

|

Pictures © CMU SEI & Pearson Education, Inc.

Key

()

Weak
entity

Nonidentifying relationship

Identifying relationship

Cardinality:

—+H— Exactly one
—O+ Zeroorone
—+< One or more
—Q< Zero or more

Uses style — shows how
modules depend on one
another (for performing
change-impact analysis and
supports incremental
development)

Layered style — divides a
system into groups of modules
that provide cohesive
responsibilities (layers) and
relate to each other
unidirectionally by the allowed-
to-use relation (supports
portability and modifiability)
— each module allocated to
exactly one layer; at least two
layers

Data model style — describes
the structure of the data used in
the system in terms of data
entities and their relationships

— avoid functional dependencies

Copyright © Alar Raabe 2018

Module Viewpoint
Layered Style — Diagram Variants
CMU SEI Views & Beyond F

B1 B2 B3

Applications/Bundles

Services

Service Registry

Security

Life Cycle

Class Loading

JVM

0S Hardware

Pictures © CMU SEI & Pearson Education, Inc.
22 29.4.18 Copyright © Alar Raabe 2018

Module Viewpoint
Aspect Style

« Crosscutting concerns

code scattering

CMU SEI Views & Beyond

|
code
tangling (r—
Account Customer Atm
Key
pmmmmmm Code to handle access control
Class .
Code to handle |
code ode to handle ogglng-
s Code to handle transaction management
Pictures © CMU SEI & Pearson Education, Inc.
23 29.4.18

Account

access
control
aspect

Customer Atm
logging transaction
aspect management

aspect

Copyright © Alar Raabe 2018

Classes with
business logic
code

Aspects that
modularize code
of crosscutting
concerns

Module Viewpoint
Data Model Style

CMU SEI Views & Beyond F

« Documentation of different stages of the data model evolution
— Conceptual — the conceptual data model abstracts implementation details and focuses

on the entities and their relationships as — | .
perceived in the problem domain On.o/e/z. -———i"’—{ Ttom
fmaw}y
— Logical — the logical data model is an evolution of the conceptual data model toward a
data management technology

. Order
(such as relational databases) - — SEEIOn
ate name
clientld i description
S qty
shllppmglnfc price listPrice
billingInfo status
creditCardld

— Physical — the physical data model is concerned with the implementation of the data
entities. It incorporates optimizations that may include partitioning or merging entities,
duplicating data, and creating identification keys and indexes

PurchaseOrder

Orderltem Catalogltem
PK pold INTEGER PK.,FK1 |pold |INTEGER PK | itemld INTEGER
FK3,11 | clientld INTEGER Lo T ftemid | INTEGER S>O——HH name VARCHAR(80)

FK1 shippinginfold| INTEGER

) qty NUMERIC(10,2) description| TEXT(400)
Etz b'”:j“.gc'”f‘é'l‘é :mgggs unit | CHAR(10) listPrice | NUMERIC(10,2)
4 | creditCar price | NUMERIC(10,2) status INTEGER

totalPrice NUMERIC(10,2)

24 204.18 Pictures © CMU SEI & Pearson Education, Inc. Copyright © Alar Raabe 2018

Module Viewpoint
Data Model Notations

CMU SEI Views & Beyond F

« Entity Relationship Diagram (ERD) Variations | copee b~ o] Department
— Peter Chen’s entity-relationship diagram

notation (Chen 1976) Key Cardinaliy:
— Crow’s foot entity-relationship diagram notation ey

— IDEF1X x Weak —+}< One or more
entity —(O< Zero or more
SETELON N R Nonidentifying relationship
Identifying relationship
 UML class diagram 1
«entity» o 0.1 «entity»
Employee Department
1
Key Cardinality:
1 Exactly one
Class
0..* 0.1 Zero or one
. 1.%
LA A Association one ormore
Dependent
0..* Zero or more

Pictures © CMU SEI & Pearson Education, Inc.
25 29.4.18 Copyright © Alar Raabe 2018

The Component-and-Connector Viewpoint
Overview

CMU SEI Views & Beyond F

« Component-and-connector views describe
— structures consisting of elements that have run-time presence (processes, components, data stores, ...)
— the pathways of interaction (communication links/protocols, data flows, access to shared storage, ...)

« Component-and-connector views show instances, not types

— style-specific types are defined in a style guide and application specific types are described in the view
documentation

« Components have interfaces, called ports and connectors have interfaces, called roles —
attachments can be made only between compatible ports and roles

- Components can be attached only to connectors, Servet il
not other components an vice versa Account S| Admin DB accessor

1 :Administrative

1

Database B «DB Access»

« Connectors E
— may have more than two roles (need not be binary) i

— cannot appear in isolation, they must be attached to a component
— can, and often do, represent complex forms of interaction

Pictures © CMU SEI & Pearson Education, Inc.
26 29.4.18 Copyright © Alar Raabe 2018

The Component-and-Connector Viewpoint
Summary

CMU SEI Views & Beyond F

* Elements
— Components — principal processing units and data stores with a set of ports
— Connectors — pathways of interaction between components with a set of roles

 Relations

— Attachments — component ports are associated with connector roles to yield a graph of
components and connectors

— Interface delegation — in some situations component ports are associated with one or more ports in
an “internal” sub-architecture; similarly for the roles of a connector

* Purpose

— Shows how the system works

» system’s principal executing components, and their interactions, principal data-stores, changes of structure
during execution

— Guides development and deployment by specifying the structure and behavior of run-time elements

 used protocols of interactions, which parts of the system are replicated, how does data flow through the
system, what parts of the system run in parallel

— Helps to reason about run-time system quality attributes, such as performance, reliability, and
availability

27 29.4.18 Copyright © Alar Raabe 2018

The Component-and-Connector Viewpoint
Notation in UML

CMU SEI Views & Beyond

ItemEntry = component type Get Online
Admin «server» (with UML ports «client» 81| Data Services «server» 5]
Services Catalo and interfaces))] .

Searchable 9 [H—C :Search «RPC» .Catalog
Online DataAccess

Services[1, 5]

adding navigable end to a connector

Admin -
Services] a c_om ponent mgtgnce
Online «server» fwith ports s?p“c't'v Get Online
services[] 1ib1 : Catalog octmente «clienty 21| Data Services| wserver B
Online H @ r
A DataAccess . i \= L
Services :Search «RPC» :Catahjg
a component
2] instance
«servern
lib2 : Catalog «server» 2]
:Catalog
Admi Admin «writen “repository” EI
min
Services []% «data = ltems :DataCache
ore
] accessor»

:SearchEngine

Data
Access

Data
Access

Architecture elements can have both L ooy Tl Reauests _ Valdate | gerver, &
provided and required interfaces ontine | \—Gniine [:CatalogMgr «calls ‘DataValidationT 2t

Services

Pictures © CMU SEI & Pearson Education, Inc.
28 29.4.18 Copyright © Alar Raabe 2018

The Component-and-Connector Viewpoint
Notation in UML

CMU SEI Views & Beyond

capacity = 40 ™
capacity = 40 N end-of-data = empty record
end-of-data = empty record when-full = block for 2 sec and retry
when-full = block for 2 sec and retry when-empty = block for 30 sec and retry
when-empty = block for 30 sec and retry ;
\\\ _ «filters 2] ,’; _ «filters =1
. " :Calculate :|°”t g :Format
DirectDeposit «pipe» DirectDeposit
«filter» 2] coinen _ cfiters £ — D, i i
:XmIToObject [: :Process
out in Payment
;f «pipe»
)/ -y «filter» 2]
capacity = 50 :FormatRejected
end-of-data = "EOT"” String | in Records
when-full = block for 2 sec and retry '

when-empty = block for 20 sec and retry capacity = 10 '

end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 60 sec and retry

Pictures © CMU SEI & Pearson Education, Inc.

29 29.4.18 Copyright © Alar Raabe 2018

30

29.4.18

The Component-and-Connector Viewpoint
Connection to other Views

CMU SEI Views & Beyond F

— = m——y

Key

I—;o-lower - config |- ~ stdio
\ 2 2
N L

Filter —» Pipe M Port

Module X -2 Y | xusesy

Pictures © CMU SEI & Pearson Education, Inc.

Copyright © Alar Raabe 2018

The Component-and-Connector Viewpoint
Checklist

CMU SEI Views & Beyond F

» Define component-and-connector element and connector types according to the elements of
architectural style (e.g. data flow, call-return, event-based, repository, etc.)

« Always show a component’s ports explicitly and always attach a connector to a port of a component, not
directly to a component (if it is not clear that it is valid to attach a given port with a given role, provide a
justification in the rationale section for the view)

* Make clear which ports are used to connect the system to its external environment

» Data flow and control flow models are best thought of as projections of component-and-connector views,
but they are not views because the arrows represent usage of the connectors (which define more
completely the components’ interactions)

« Show the mapping between components in a component-and-connector view and their respective
implementation units in module views (in general, this is many-to-many mapping)

* For components that run as concurrent processes or threads, it's important to document how these
processes or threads are scheduled or preempted, and how access to shared resources is synchronized

« Component-and-connector views can be structured in tiers — which are logical groupings of components

31 29.4.18 Copyright © Alar Raabe 2018

Component-and-Connector View
Example

CMU SEI Views & Beyond

— e — — — — — — — e — — — — — ——— — — — — —

Notifier

|

) I
Sign On |
|

I

I (: 1 Y[op
| : | || Order I | TrackingService |
| | : *.do Main - — — T"/ Facade ll :
| | | I Servlet [- N OpcPﬁJrL:hase |
: | | N~ — |A Order|819r\r|'ce |
x I |
| | | _ .screen N VI\I‘ Catalog I |
| o N ; OPC
| | | = \/ | Facade I |
| | Template Screen |/ <| | I I
| | e Servlet JSP I | I
| e > g '
| |: nu“kiif;i?l_nj oy Adventure| |
| _ _ efiniionsxml] 17 7/ Catalog |
| : | = index.jsp —— b I’I/ OB |
: | : — /l | :
) |
| : | | !
| | | |
| | | !
| ! l !
— v

Client tier Back end
~ N ... ~
Key
Client-side Java Senvl Stateless Data File Java EE Context
application EE erviet session store application listener
filter bean
(' ™
—p= HTTF/ — —> Java JDBC +evveens [>File = ———=SO0AP ? Web services | l Container
HTTPS call 110 call endpoint)

32 204.18 Pictures © CMU SEI & Pearson Education, Inc. Copyright © Alar Raabe 2018

The Allocation Viewpoint
Overview

CMU SEI Views & Beyond F

« Describes mapping of software units to elements of environment

(e.g. hardware, file systems or development teams)

Computing
Platform

Production

¢ ElementS Environment
— Software element Deptoyment
(with properties required of the environment) \ AL instan

Style
— Environmental element = /

(with properties provided to the software)

Work
Assignment

Style Software Elements
from Module or
C&C Views

Development
Organization

 Relations

— Allocated-to — a software element is
mapped (allocated to) an environmental
element (properties are dependent on
the particular style)

* Purpose
— Shows the tools and environments in which the software is developed
— Helps to carry out various tasks (edit, build, package, deploy, configure, ...)
— Supports analyzing performance, availability, reliability, security and run-time dependencies
— Helps planning and managing resource allocations, assigning responsibilities

— Basis for work breakdown structures and for budget and schedule estimates

Pictures © CMU SEI & Pearson Education, Inc.
33 29.4.18 Copyright © Alar Raabe 2018

Allocation Viewpoint Styles

CMU SEI Views & Beyond

* Deployment style — maps components and ——
connectors to the hardware elements user PC \—WN
. . . . «internets Application server
— allocation topology is unrestricted, but the required L
properties of the software must be satisfied by the y| | envionmonts \D“.inbuxwr,,
provided properties of the hardware || -
Adméréuser 1 jf
K «de;?loy»
<<déql0y>» :
.‘ «artifact» D .
ap‘;)a—g‘i?:rc]t}ara EnterpriseV{IebApp.ear ﬁﬁfnon;
[}

Install style — maps components to a file system in the ——
. . ukesBankApp.ear
production environment

account-ejb.jar customer-ejb.jar tx-ejb.jar

— files and folders are organized in a tree structure, follows Conlr
an is-contained-in relation

web-client.war
Dispatcher S | tld files .gif and .
JSPs uJ html files struts.jar

app-client.jar Key

o [

Pictures © CMU SEI & Pearson Education, Inc.
34 29.4.18 Copyright © Alar Raabe 2018

Allocation Viewpoint
Install Style Notation in UML

CMU SEI Views & Beyond

Notation: «artifact» o, «manifest
UML DukesBankApp.ear !
1
- T e !
e N Tl i
«manifest» «manifest» «manifest» :
-7 \ T~ ,
=" \ -‘H“--_‘ '
P N =N i
wartifact» D wartifact» D wartifact» D E
account-ejb.jar customer-ejb.jar tx-ejb.jar !
: : i
/ N\ H A “‘ N |
«manifests «manifest» «manifest» «manifest» «manifests «manifest» |
‘ A ! N ' ~ !
% N v 3 N S |
= | =] 2] 21 |
«sessionbean» . «sessionbean» sessionbean o i
wentl ean» H @ » 4 »
Account A b tEJB Customer centybesn) TxControllerEJB TXEJB |
ControllerEJB ceoun ControllerEJB CustomerEJB E
|
|
o e |
1
v

vartifact»
app-client.jar

O

7
;
’
i

T
\
v
\

Shorthand for
all JSP files

wartifactn»
web-client.war

o

«manifest» -~

- -

-
-

T
” P H
,
1
|

s
«manifest» |

~

Y
«manifest»

umafnlsttn «manl_festn J\:(J,r‘ «manife’sh} ‘/,/ {(manrifest,, .
y N PR A v Y
E aartifact» D E‘ aartifact» D «artifact» D
«J2EEapp.client» AdminMessages «servlet» «JSP» * tld, *.gif, WebMessages wartifact»
BankAdmin .properties Dispatcher *Jsp * html .properties struts.jar

35

29.4.18

Pictures © CMU SEI & Pearson Education, Inc.

Copyright © Alar Raabe 2018

Allocation Viewpoint Styles

CMU SEI Views & Beyond

 Work assignment style — maps modules to development teams (describes responsibilities for
elements of the work-breakdown structure)

— usually one module is allocated to one organizational unit

— ways of work assignment

platform(s) — reusable core assets vs.applications

competence-centers — work is allocated depending
on the technical or domain expertise

open-source style — many independent contributors with
common integration strategy

process-steps — work is allocated according to the
phases of the software development process)

release-based — different releases are allocated to
different teams

ECS Element (Module)

Segment

Subsystem

Organizational Unit

Science Data
Processing
Segment
(SDPS)

Client

Science team

Interoperability

Prime contractor team 1

Ingest

Prime contractor team 2

Data Management

Data team

Data Processing

Data team

Data Server

Data team

Planning

Orbital vehicle team

Flight
Operations
Segment
(FOS)

Planning and Scheduling

Orbital vehicle team

Data Management

Database team

User Interface

User interface team

* Implementation style — (similar to install style) maps modules to a development infrastructure

- Data stores style — (similar to deployment style) maps data entities to the hardware of the data
servers (e.g. distribution of tables to servers, geographic distribution of the databases, data
warehouses and the data stores that feed them)

« Coordination style — to align the architecture and the development organization by representing
complexity and uncertainty in the communications (e.g. Communication Capacity Matrix (CCM))

36 29.4.18

Pictures © CMU SEI & Pearson Education, Inc.

Copyright © Alar Raabe 2018

Beyond the Views

CMU SEI Views & Beyond F

« Documenting context diagrams

— A context diagram establishes the boundaries for the information
contained in a view (“‘context” means an environment with which
the part of the system interacts)

— A top-level context diagram

* is a context diagram in which the scope is the entire system — it defines
what is and is not in the system, thus setting limits on the architect’s tasks

* makes a good first introduction to a system

* Documenting variation points

— Some architectures provide built-in variation points to facilitate building a family of similar but
architecturally distinct systems, other architectures are dynamic, in that the systems they describe change
their basic structure while they are running

* Documenting architectural decisions

— Why we made architectural decisions the way we did is just as important as the results of those decisions
— how to record the rationale behind your design

« Combining views
— Prescribing a given set of rigidly partitioned views is naive; there are times and good reasons for
combining two or more views into a single combined view

37 29.4.18 Copyright © Alar Raabe 2018

Documenting Context Diagrams

CMU SEI Views & Beyond

* Describe the context of the system being developed using the vocabulary of

the view that you're documenting

Our system

%

Network transport layer

Operating system

1 -
Larger system
1 1
A B
— I \
C Our
system
1
A ___wuser
I
|
— |
e — =
B o suse» =
[——=
_| :
C o _wse |
38 29.4.18

1

Our
system

Pictures © CMU SEI & Pearson Education, Inc.

Interaction

(EDOS/EBnet | L0 data k ~ e :
GLAS higher « Interaction /Science Computing
level products . + Algorithms > Facilities

(GLAS SCF L—: il Exchange Data
GLAS L0 data Data < . >(ASTER GDS

Processing poeee >
MODIS higher Segment Data Acquisition Request
level products LOR Data
MODAPS d 4 LPS

MODIS L1A/L
1B, ancillary Higher level AMSR-E
data data products AMSR-E SCF

MOPITT LO ry
data MOPITT LO
higher level
MOPITT SCF products
SAGE Il SAGEINLO
higher level| |data
products 1

SAGE Il SCF

ACRIM LO data &
higher level products

ACRIMI SCF

SAGEIIILO
data

Key
External
Entity

C)

System

+«— X interacts withY

— Data flows from
XtoY

Copyright © Ala

r Raabe 2018

Documenting Context Diagrams in UML

CMU SEI Views & Beyond F

« Combination of Use Case and Class diagrams

«subsystem»
i Patient monitoring

Patient

Patient
log

« Package diagram Nurse
]
A ___ wuse» __i Notation: UML%
I
[1 I 1
l—— =
B __ _ suses = Our
system
[———=
_| :
|
C o _uuse»

Pictures © CMU SEI & Pearson Education, Inc.
39 29.4.18 Copyright © Alar Raabe 2018

Documenting Variation Points

CMU SEI Views & Beyond F

* Need for variability
— some set of decisions has not yet been made, but options have been explored
— the architecture is prepared for envisioned future changes
— there’s need to provides basic functionality that can be extended easily

— the architecture is for a family/collection of systems and contains explicit places where
configurations and extensions to the reference architecture can occur

« Variation points should be documented in two ways

— their existence should be noted in the appropriate places throughout the view (primary
presentation, element catalog, context diagram, and so on) for the view in which they are visible

— the variation point should be explained in the view’s variability guide

«interface» Notation: UML Val_’!angn point VP7: set by
build-time parameter

Web Browser “NbrOfSocketConnections”
(default=1..32)

B : :\ A o
/ \ N -
' \ ~
/ \ ~
/ \ N
’ \ S

Socket
Connection

.

Internet Internet
Explorer 6 Explorer 7

Firefox Chrome

Pictures © CMU SEI & Pearson Education, Inc.
40 29.4.18 Copyright © Alar Raabe 2018

Documenting Variation Points

CMU SEI Views & Beyond F

» Description of the variation point

— What decision has been left open by this variation point should be meaningful to the stakeholders, e.g.
choosing different implementations results in different feature behavior)

» Available options and their effects
— What is the range of choices available to exercise this variation point and what are the effects of each

« Condition of applicability
— What conditions must be met for a variation point to apply

« The binding time of an option
— Possible binding times include design time, compile time, link time, or run-time

 How the option is exercised
— What has to be done to choose an option of the variation point (set a build-time parameter or replace

one implementation of a module with another) — this section is the “how-to” guide

« Dependencies among variation point options
— Does chosen option for one variation point, constrain other choices

41 29.4.18 Copyright © Alar Raabe 2018

Documenting Architectural Decisions

= CMU SEI Views & Beyond F

« Document the decision (and explain the reasoning that lies behind), if
— it has an important effect on the system (that will be difficult to undo)
— the design team spent significant time and effort evaluating options before making a decision
— the decision is complex or confusing (seems not to make sense at first)
— it seems unusual or unexpected (because these are very likely to be broken by mistake)

« Essential information about a key architectural decision
— Issue — architectural design issue being addressed by the decision
— Decision — the solution chosen
— Assumptions — based on which the decision is being made (cost, schedule, technology, ...)
— Alternatives — alternative solutions/options considered

— Argument — describing why given alternative was selected (e.g implementation cost, total cost of
ownership, time to market, availability of development resources)

— Implications — describe the decision’s implications
— Related things The life of a software architect is a long (and
sometimes painful) succession of sub-optimal
decisions made partly in the dark

» other decisions, related requirements,
affected architecture elements and

external artifacts (e.g. budgets, schedules) S
. Arucnten

42 29.4.18 Copyright © Alar Raabe 2018

Documenting Architectural Decisions
Classification

» Kinds of Architectural Design Decisions

— Existence Decisions (ontocrises)
 Structural and Behavioral decisions
— Ban or non-existence decisions (anticrises)
— Property Decisions (diacrises)
» Constraints, Design rules, and Guidelines

— Executive Decisions (pericrises)

» Organizational, Process (methodological),
Technology and Tool decisions

 Attributes of Architectural Design Decisions
— Epitome (the Decision itself)
— Rationale (“why”)
— Scope

— State (idea, rejected, tentative/challenged,
decided, approved)

— Author, Time-Stamp, History
— Categories (usability, security, ...)
— Cost, Risk

43 29.4.18

P. Kruchten (2004) #

Relationships between Architectural Design
Decisions

Constraints

Forbids (Excludes)

Enables

Subsumes

Conflicts with (mutually excluding)
Overrides

Comprises (is made of, decomposes into)
Is bound to (strong)

Is an alternative to

Is related to (weak)
Dependencies

Relationship with External Artifacts

Traces to
Does not comply with

Copyright © Alar Raabe 2018

Combining the Views

CMU SEI Views & Beyond F

« A combined view is a view that contains elements and relations that come from two or
more other views
AN N
Element 1

* An overlay is a view that combines the primary — :
ement

presentations of two or more views followed by

Communicating-Processes

supporting documentation for that combined Module View View
primary presentation ‘
* A hybrid style is the / 1 N
combination of two or N A
more existing styles 44—-’" Flement |
Element 1 iRelation 2 Element 2
(element and relation .@ Element 3
types of the constituent | Viewa View B Combined View
styles can “meld” into

new types with new

Combined View

44 204.18 Pictures © CMU SEI & Pearson Education, Inc. Copyright © Alar Raabe 2018

Combining the Views
Example

CMU SEI Views & Beyond

e «pluginy RMA Model
decomposition- Solver
SEl.ArchE.UI over
uSes- actions
. . solveModel(
generalization tasksl)
\T)
» " ,‘ f \\ :
com b| ned view / ui g !) Not part of ArchE Ul AN
; y : - Will be developed
«se» / «use» v separately for demo.
«use» fJ \
«plugin» / oS h
SELArchE Li e o N
1 |’r- I’J.II .fj.l —| |J:;/ expon .\Q‘{I!I
i)
_ A% corebridge «interface»
config \'/e} :
wuser Export Design
RF Config| _|-—= = , W
Loader | «use» - user ExportTo | | ExportTo
g : Acme Rose
«Uf;e}l
vV
Jess Java API

. Notation:
- - - - - External library % UML

Copyright © Alar Raabe 2018

Pictures © CMU SEI & Pearson Education, Inc.

45 29.4.18

46

multi-tier
client-server
deployment

combined
view

29.4.18

Combining the Views
Example

CMU SEI Views & Beyond

Admin AppServer1 AppServer2 Database
user PC Intranet server
\. "".| ! ‘l / \ / |/ \I
| | ‘ — 7] L - 1 1 | |
— 1 /
Bank JI e = | |./ \ |
Admin | "~ T1— _ | | | Ny |
| 4l / NJ |
A | R /N |
H 7 — | 4 Y Customer T Bank |
/ ey EJB '
| |/ AP / /| bB ||
WebUI [|
N r‘(| | |
| J N |
|
Client tier | | ‘ |
~_ ¢ Internet k e lB P
Internet * 1 © n_ef / \ic_—en_rrey
user PC
Key Client-side Web Stateful Entity Relational Machine
application component EQSSIOH bean data source node
ean
(™ Communication
_ g http/ = Remote JDBC database I:bl Comment Tior = channel with
https EJB call access L | multiplicity (1 or *)

Pictures © CMU SEI & Pearson Education, Inc.

Copyright © Alar Raabe 2018

Descriptive Completeness

CMU SEI Views & Beyond F

« There may be good reasons to omit some details from
architecture descriptions

» Refinement — gradual disclosure of more-detailed information @

— decomposition refinement reveals internal substructure

— implementation refinement replaces elements with different, more @/ @

implementation specific elements
(a) (b)

* Documentation may or may not show all elements and

relations
— when some elements and relations are suppressed, the view Notation: umﬁ Shape
documentation should make it clear to the reader %
» use ellipses (“...”) to indicate that there are other elements
« use a comment box in the diagram to explain that not all elements
are being exhibited Polygon Circle Spline .« o e

— why omit some elements and relations in a view
* it's early in the design — all things are not yet known

« want to focus on the most important parts of the view
(reduce clutter in diagrams)

47 204.18 Pictures © CMU SEI & Pearson Education, Inc. Copyright © Alar Raabe 2018

Advanced Techniques

CMU SEI Views & Beyond F

* Documenting Software Interfaces

* Documenting Behavior

* Requirements Viewpoint

* Choosing the Views

* Building the Documentation Package

* Architecture Overview Presentation

48 29.4.18 Copyright © Alar Raabe 2018

Documenting Software Interfaces

CMU SEI Views & Beyond F

* Aninterface is a boundary across which two elements meet and interact or
communicate with each other

« An interface document is a specification of what an architect chooses to make publicly
known about an element in order for other entities to interact or communicate with it

« A resource of an interface represents a Interface Documentation &
function, method, data stream, global Section 1. Interface Identity
variable, message end point, event trigger, Section 2. Resources
or any addressable facility within that e g\e’”mtgﬁﬂcs
interface — Error Handling
IMovementControl [-~ 7] ISensor Section 3. Data Types and Constants
. °7 ooor [© Nozaﬂon;wﬁ Section 4. Error Handling
Section b. Variability
e Section 6. Quality-Attribute Characteristics
(b) |212:i$mcmm|<j_“ Garage | 2% e Section 7. Rationale -and Design Issues
ﬁ:ﬁ((:;and() Section 8. Usage Guide

49 204.18 Pictures © CMU SEI & Pearson Education, Inc. Copyright © Alar Raabe 2018

Some Principles about Interfaces

CMU SEI Views & Beyond

+ All elements have interfaces
— All software elements described in any view interact with their environment — architect decides what to document

* An element’s interface is separate from its implementation

* An element can have multiple interfaces

— Each interface contains a separate collection of resources (functions, data, message end points, event triggers, ...) that
have a related logical purpose, or represent a role that the element could fulfill

— Multiple interfaces provide a separation of concerns — a specific actor might require only a subset of the resources
— Evolution can be supported by keeping the old interface and adding a new one

+ Elements not only provide interfaces but also require interfaces

— An element interacts with its environment by making use of resources or assuming that its environment behaves in a
certain way — without these required resources, the element cannot function correctly

« Multiple actors may interact with an element through its interface at the same time (if interface allows multiple
concurrent interactions)

* Interfaces can be extended by generalization
— Examples of resources often shared by several interfaces include: an initialization operation, a set of exceptions, ...

+ Sometimes it’s useful to distinguish interface types from interface instances in the architecture (if components
can provide multiple instances of the same interface)

50 29.4.18 Copyright © Alar Raabe 2018

Documenting Behavior

« What to document
— The ordering of interactions among the elements
Opportunities for concurrency
Time dependencies of interactions
Possible states of the system or parts of the system

CMU SEI Views & Beyond

— Usage patterns for different system 7% ‘Loain Login || serpao
Page Controller
resources 4 | |
:User
logi
| ogmn L l login(...) | |
I — checkPwd(...)
Phone System
Make a | [<-----mo- _
basic call 1 | new | | iUser
T | Session
| 1 Key (UML) &] 11
Make a 1.2 Use case .
Callee | 1 1
3-way call register User Login(...)
/ Actor I <-—————--- |
< _________
Call ~_ Add contact % | -i— : |
a e\ Association
— = Generalization Key (UML) |
.—;—’ 1 System % Actor Object | Lifeline |j Execution
bounda
Mobile v
Callee Synchronous Asynchronous — __=u Return
message message message

Pictures © CMU SEI & Pearson Education, Inc.

51 29.4.18

Copyright © Alar Raabe 2018

Documenting Behavior in UML

CMU SEI Views & Beyond

Phone System

.Nlakea
basic call
;% Key (UML) &y

T2 Callee Q Use case
%< — % Actor
Caller ‘..Comact Association

% —== Generalization
Communication diagrams ”/Mobi,e s Sequence diagrams

Use Case diagrams

Callee
1: create 2: connect
. S —> —> . :Login :Login
:Application Call :UserDao :Logg
Application Call % Page Cantroller UserDao Logger
2.1a: create User I I | |
3.1.2: | o | login(...) |
2.1a.1.1.1: w_connected | |, | B checkPwad...)
connected create |
2.1b.1.1.1: |
alerting . . |
Originating Destination | new | User
CormERTS :Connection | Session |
91811 2.1b.1a: 2.1b.1b: <ttt TR JT| |
a;:ti\;'el : T create \ create | re(‘I]ister User Login(}..) |
3.1.1: |] |
21a1: passive 2.1b.1b:1 <o ™ T |
. t : 2.1b.1a.1: . \ringing | |
creale ringing 3.1: active | | |
Terminal 1 Terminal 2 Terminal 3 Key (UML) | Evecution
:Terminal :Terminal -Terminal % Actor |:| Object | Lifeline occurrence
Connection Connection Connection
> Synchronous = Asynchronous > Return
N . message message message
Key: UML 3: answer

52 204.18 Pictures © CMU SEI & Pearson Education, Inc. Copyright © Alar Raabe 2018

Documenting Behavior in UML

CMU SEI Views & Beyond E

. . 22l
» Activity diagrams el
Update
5 order
E status
E\ . [irl])SaLII:r:;i:]m Notify [order failed] ’
] Verify customer order g 2 =l
[J) y £ =
E cred(:t of failure complete] §.g E g E'g
. o car o o 2
° 3 - i = 2 E 5 E
?ltate Machine : g S [(E] |
lagrams
H =
— comprehensive model to show the 3 patancs | |
complete behavior of structural i ‘
ey o . . 25 EEET Send activit
element — it is possible to infer all e
. . g |
possible paths from initial state to o
. &2 Pmc‘ess Send lodging
final state g2 odsing
ress “+” - /
F | t E;E Process A
0 acceleraie =3 airline Send airline
a d.:" order invoice
press “cruise press “set” or Key (UML)
on/off” button _ ~——\ “resume” buttons push Send Accept - Demsm X Fm Merge node
o goged |) trote () wewon [oo 2 e we” e
di d d
" . B ek pedal . Initial © Final . Control Actlwty partition (component
press cruise \—./ tap brake peda] node node ~ — flow responmbleforact\ons)
on/off” button

press “cruise on/off” button

press "~ | yors UML
to coast

Pictures © CMU SEI & Pearson Education, Inc.
54 29.4.18 Copyright © Alar Raabe 2018

Documenting Behavior
Summary

CMU SEI Views & Beyond F

* Documenting behavior adds semantic detail to elements and their interactions that have time-related
characteristics

— behavioral models complement structural models by adding information that reveals ordering of interactions
among the elements, opportunities for concurrency, and time dependencies of interactions

- p— e .-" T
: , , b — i— N
+ Use various types of behavior documentation together %’i/E' 1’; L= ,"* =D
a) begin by documenting an overview of the functional TR | =] " “l jr’”
requirements as use case diagrams - . . s o
a C

b) then produce use case descriptions to document the
events and actions that correspond to performing each use case

c) next, for each use case produce either a sequence diagram or a communication diagram to define the
messages between envisioned architecture elements

d) finally, produce state-charts to complement the behavior documentation of the elements that have elaborate
states and state transitions

« Behavior can be documented in the
— element catalog of a view
— interface documentation, as the element’s externally visible behavior (used to explain the effects of a
particular usage pattern)
— design background section, which includes results of analyses (as behavior descriptions are often a basis for
analysis)

Pictures © CMU SEI & Pearson Education, Inc.
56 29.4.18 Copyright © Alar Raabe 2018

Documenting Mapping to Requirements

CMU SEI Views & Beyond F

« Showing how the architecture satisfies requirements is an important part of the
documentation

» This helps to validate the architecture by showing that
— No requirement was forgotten
— No requirement was contradicted
— Every architectural decision is either predicated on at least one requirement

» To facilitate validation, document a mapping between architectural decisions and
requirements

— Put the mapping in a single place in the documentation — a new section in the documentation
beyond views (good for informal or fluid requirements or if fine-grained accounting of each
requirement is not needed)

— Distribute the mapping throughout the architecture documentation — add a separate section
to each view (good for fine-grained requirements that map to fine-grained architectural
decisions)

— Capture the mapping to requirements in a view of its own — according to “Requirements
Viewpoint”

57 29.4.18 Copyright © Alar Raabe 2018

Requirements Viewpoint

P. Eeles, P. Cripps (2009) F

* The requirements view (based on this viewpoint) describes
requirements that have shaped the architecture (may include

functional requirements, quality attribute requirements, and
constraints)

Business
domain
concepts

If requirements are viewed as

— “structure” in the software’s environment, a mapping to

requirements could be considered a kind of allocation style, and
documented as a kind of allocation view

Stakeholder
needs

Business
processes

System External
features system

interfaces

Business
rules

Functional

Glossary
requirements

— a set of concerns that crosscut the architecture elements, a
mapping to requirements could be considered a kind of aspect

view (good for projects with fine-grained requirements that map to
multiple architectural decisions or elements)

Quality
attribute
requirements

Solution
constraints

Enterprise o
architecture Ex!st\ng IT
principles environment

The value of a requirements view, is not confined to the

identification of the subset of requirements that are deemed to
be architecturally significant

» The architecture description as a whole should explicitly define
how the architecture addresses each of these requirements

Pictures © CMU SEI & Pearson Education, Inc.
58 29.4.18 Copyright © Alar Raabe 2018

Choosing the Views

» Usability
— a decomposition view to analyze information

presented to the user, and assign
responsibility for usability-related operations

— a component-and-connector view to enable
analysis of cancellation possibilities, failure
recovery, etc.

 Performance

— component-and-connector view to support
execution tracking (performance modeling)

— additionally deployment view, behavior
documentation

« Modifiability
— auses view and a decomposition view to
show dependencies (will help with impact
analysis)
— a component-and-connector view is needed

to reason about the run-time effects of a
proposed change

99 29.4.18

CMU SEI Views & Beyond F

Security (generally same information as needed
for the performance analysis)

— a deployment view and context diagrams to see
outside connections

— a component-and-connector view to show data
flow and security controls

— a decomposition view to find where authentication
and integrity concerns are handled

Availability

— a component-and-connector view to analyze for
deadlock, synchronization and data consistency
problems, and show how redundancy, fail-over,
and other availability mechanisms work

— a deployment view to show possible points of
failure and backups

Accuracy

— a component-and-connector view showing flow
and transformation of data (helps identify places
where computations can degrade accuracy)

Copyright © Alar Raabe 2018

Building the Documentation Package

CMU SEI Views & Beyond F

* Document the relevant views, then add documentation that applies to more than one view

« What views you choose depends on
— who the important stakeholders are
— what structures are present in the architecture
— budget, schedule and what skills are available

» Choose at least one view of each of the three different viewpoints
— combine some views to reduce the number of views to create, keep consistent, and maintain

» Variations
— document how to use the architecture — the “use cases” for the architecture
— document the major design approaches taken — a major “motif” or “pattern”
— make a single element catalog for the whole architecture — because elements appear in more than one view
— add a section to record open questions

* Document a Mapping to Requirements

— to validate the architecture by showing that no requirement was forgotten, no requirement was contradicted,
and every architectural decision is predicated on at least one requirement

60 29.4.18 Copyright © Alar Raabe 2018

Documentation Package
Documenting a View

CMU SEI Views & Beyond F

» The primary presentation
— the summary of most important information about the system

Template for a View

— includes the primary elements and relations (or part of those) B T
— often graphical (a diagram), but might be textual (table or list) =]

* The element catalog
— elements in the view and their properties
— relations (not all the relations are shown) and their properties _
Section 2. Element Catalog

— element interfaces Section 2.A. Elements and Their Properties

— element behavior (if elements have complex interactions) Section 2.B. Relations and Their Properties
Section 2.C. Element Interfaces
Section 2.D. Element Behavior

O o _od
o_ﬂD

« A context diagram shows how the system or portion of the

. Section 3. Context Diagram
system depicted in this view relates to its environment J

[—

o

« A variability guide shows how to exercise any variation [] =
points that are a part of the architecture shown in this view
Section 4. Variability Guide
« Rationale explains the reason for the design reflected in the Section 5. Rationale

view (provides a convincing argument that it is sound)

Pictures © CMU SEI & Pearson Education, Inc.
61 29.4.18 Copyright © Alar Raabe 2018

Documentation Package
Outside of Views

CMU SEI Views & Beyond F

* Documentation Roadmap — what information is in the documentation and where to find it

 How a View Is Documented — explain the standard organization you're using to
document views

Template for Documentati
« System Overview Beyond Views
—a Shqrt dgscrlptlon of the Sy.Stem S Architectflre Section 1. Documentation
function, its users, and any important documentation _ _
background or constraints information | | Section 2. How aView s
— provides readers with a consistent " _
mental model of the system and its purpose Section 3. System
Architecture J Section 4. Mappi
« Mapping Between Views Inormation | I Section 5. Rat
— to understand the associations between views L EEIIEEL AR LT
« Rationale

— documents the architectural decisions that apply to more than one view

Pictures © CMU SEI & Pearson Education, Inc.
62 29.4.18 Copyright © Alar Raabe 2018

Architecture Overview Presentation
Outline for One-Hour Overview (20-35 slides)
CMU SEI Views & Beyond F

* Problem statement (2—-3 slides) — the problem the system is trying to solve
— Driving architecture requirements, measurable quantities associated with these, and approaches for meeting these
— Technical constraints (operating system, hardware, or platform software)

» Architecture strategy (2 slides) — the major architecture challenges
— The architecture approaches, styles, patterns, or mechanisms used (what quality attributes they address and how)

+ System context (1-2 slides)

— One or two whole-system context diagrams that clearly show the system boundaries and other systems with which
it must interact

* Architecture views (12-18 slides)

— Chosen views (at least one module, one component-and-connector, and one allocation view) — for each, include
the top-level (system wide) primary presentation and, if needed, few refined primary presentations (include a
notation key)

* How the architecture works (3—10 slides)
— Up to three of the most important use cases (if possible, include the run-time resources consumed for each)

— Show the architecture’s capacity for growth with up to three of the most important change scenarios (describe the
change impact)

63 29.4.18 Copyright © Alar Raabe 2018

Content

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Why to Document Architecture

Lao Tsu (by Philippe Kruchten)

CMU SEI - “Views & Beyond” Method
— Module Views
— Component-and-Connector Views
— Allocation Views
— Advanced techniques

Some other Architecture Documentation Methods

Other Architecture Documentation Practices
— Architecture Description Languages
— Documenting Architecture in Code

Conclusions

64 29.4.18 Copyright © Alar Raabe 2018

Rational Unified Process (RUP) “Five-View Approach”
(based on P. Kruchten “4+1 Views”)

1. Logical view captures the functional requirements (what the system should provide in terms of
services to its users)

2. Process view documents the tasks (processes and threads) involved, takes into account some
non-functional requirements, and addresses issues of concurrency and distribution

3. Development view focuses on the actual software module organization in the software
development environment

4. Physical (deployment) view documents the various physical nodes for the most typical platform
configurations and takes into account primarily the non-functional requirements of the system

. _ Logical View Development View
5. Scenarios (use case) view (end-users) (programmers)
d.OCL.”.nentS archlt_ecturally Functionality B Software management
significant behavior I
the system’s intended functions and
its environment
a contract between the customer and Scenarios
the developers and as a design check
on the other views Process View Physical View
)) (system integrators) (system engineers)
to discover the architectural elements ——
during the architecture design and to Performance —— System topology
validate architecture Scalability Delivery
Throughput Installation
Telecommunication

65 29.4.18 Copyright © Ala Raabe 2008

Siemens “Four Views”

» Conceptual View
— explains how the system's functionality is mapped to components and connectors

* Module View

— explains how the components, connectors, ports, and roles are mapped to abstract modules
and their interfaces

KEY Ka—pY X teeds forward to Y and Y leeds backward to X

Creganizational Factons

. : ey el
« Execution View
. . . CONCEFTUALVIEW corara) Dasign Tasks: Final Design Tasic: EXECUTION VIEW
— explains how the system's functionality Gons s <> S e < s |Gt
is mapped to run-time platform elements, dowkp Wabigen g:':.”::mfi“;"""" A :
such as processes and shared libraries MODLEVEN | jComougrTue Fru Don T L@ o
Giiﬂ:;na..dm —’.Im;ﬂ e indRriACE GESIGR il C‘;&:.I:IT‘ m“";l':aka. E
— platform elements consume platform o s ““'“*‘r”“ = S emmn |
resources that are assigned to a T P A —— :
T ot e B owwwet i sertg ([o ek i
hardware resource oy ies | Smmetoriien oty O n
¥ ¥
« Code View
— explains how the software implementing the system is organized into source and deployment
components

Pictures © CMU SEI & Pearson Education, Inc.
66 29.4.18 Copyright © Ala Raabe 2008

Rozanski and Woods Viewpoint Set

* Functional view documents the system’s functional elements, their responsibilities, interfaces, and
primary interactions — cornerstone of most architecture documents (drives system structures)

« Information view documents the way that the architecture stores,
manipulates, manages, and distributes information (static data
structure and information flow)

operational information

« Concurrency view describes the concurrency structure of the
system and maps functional elements to the parts of the system
that can execute concurrently (process and thread structures

and the inter-process communication mechanisms) e
- Development view describes the architecture that supports the fievelopment
software development process

* Deployment view describes the environment into which the system will be deployed, including
capturing the dependencies the system has on its run-time environment

« Operational view describes how the system will be operated, administered, and supported when it
is running in its production environment

Pictures © CMU SEI & Pearson Education, Inc.
67 29.4.18 Copyright © Ala Raabe 2008

Comparison of Viewpoints
in different Architecture Description Methods

RUP / Kruchten Siemens Rozanski & :
cnll sl 4+1 Four Views Woods Aol lE e
Logical Development Package
Heeulis Implementation slzelule Information Class
LB Process Conceptual I(:chJJrr]:(::tliJ?Pear:ce Camgemnent
and-Connector P Object

Information (flow)

Allocation Deployment Sceudon Distelioy =i B:elco:arzeent
Ploy Code Operational ploy
Requirements
Use Case
Sequence
Behavior Scenarios Communication
Activity

State Machine

68 29.4.18 Copyright © Ala Raabe 2008

Content

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Why to Document Architecture

Lao Tsu (by Philippe Kruchten)

CMU SEI - “Views & Beyond” Method
— Module Views
— Component-and-Connector Views
— Allocation Views
— Advanced techniques

Some other Architecture Documentation Methods

Other Architecture Documentation Practices
— Architecture Description Languages
— Documenting Architecture in Code

Conclusions

69 29.4.18 Copyright © Alar Raabe 2018

Architecture Description Languages

* An approach to formalize architecture descriptions and provide standardized
representation to support tools, analyzes, simulation and interchange

« Textual and/or graphical syntax and formally defined semantics

System simple cs = {
Component client = { Port send-request; };

+ Some ADLs R e et L
- Academic Attazﬁzzt?s;nd—request to rpc.caller;
R ACME (CMU) , server.receive-request to rpc.callee; 1_.08““:?#? e 233[,,3“‘,,0,0”
. C2(UCl) } el ' s
+ Wright (CMU) e
— Standards

» AADL (SAE — Society of Automotive Engineers)

« SysML (OMG) extension of UML by
requirements & parametrics diagrams

* ArchiMate (OpenGroup) — for enterprise level

3. Requirements 4, Parametrics
Pictures © OMG e

70 29.4.18 Copyright © Alar Raabe 2018

Pachage and Use Case diagrams are not shown in this example, but are respectively pan of the structure and behavior pillars

Documenting Architecture in Code

The source code is the design

J. W. Reeves

« Use naming conventions according to the architectural elements — using vocabulary
of relevant architecture style (e.g. components, connectors, layers, ...)

» Organize/package source code into name-spaces and modules
« Use meta-info (annotations and attributes) to map software to the external structures

« Create internal Domain Specific Languages (fluent coding style — method chaining)
for expressing architecture structures directly in code (kind of ADL)

* Represent the architectural abstractions (both control and data) directly in code using
abstraction mechanisms of programming language

* Represent the domain model including the system environment in the source code

* Document the architectural decisions in source code comments

73 29.4.18 Copyright © Alar Raabe 2018

Content

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Why to Document Architecture

Lao Tsu (by Philippe Kruchten)

CMU SEI - “Views & Beyond” Method
— Module Views
— Component-and-Connector Views
— Allocation Views
— Advanced techniques

Some other Architecture Documentation Methods

Other Architecture Documentation Practices
— Architecture Description Languages
— Documenting Architecture in Code

Conclusions

74 29.4.18 Copyright © Alar Raabe 2018

Conclusions

Designing an architecture without -
documenting it, is like winking at a girl
in the dark — you know what you're

« Creating an architecture is not enough — doing, but nobody else does

it has to be communicated properly to
let others use it properly to do their jobs

E. Woods

* Architecture documentation is for
— communication — primary communication vehicle between stakeholders
— education — introducing new people to the system
— designing — provides structure for design decisions
— analyzing — provides information to analyze the system properties (quality attributes)

— constructing — tells what to implement (must contain models to support automated
construction)

* Write documentation
— from the reader’s point of view, for clear purpose and record rationale
— avoiding unnecessary repetition and ambiguity
— using a standard organization

75 29.4.18 Copyright © Alar Raabe 2018

Conclusions

Make your system capture its own —
current architecture automatically

 Document the relevant views (at least one per each major viewpoint), then add
documentation that applies to more than one view (combine some views to reduce
the number of views to create, keep consistent, and maintain)

« Choose the views depending on
— who the important stakeholders are and what are their concerns towards the system
— what structures are present in the architecture
— budget, schedule and what skills are available

- Additionally to the views

— document the major design decisions taken, how to use the architecture and the ways
architecture is allowed to change

— make a single element catalog for the whole architecture — because elements appear in
more than one view

— document a mapping to requirements, to show that no requirement was forgotten, nor
contradicted

— add a section to record open questions

76 29.4.18 Copyright © Alar Raabe 2018

144

29.4.18

Thank You!

38. The architect concerns himself with
the depth and not the surface, with
the fruit and not the flower.

Lao Tsu (by Philippe Kruchten)

Copyright © Alar Raabe 2018

78

Questions

What's the purpose of software architecture
documentation?

Describe 3 major viewpoints (what they represent and
their purpose) in CMU SEI “Views & Beyond” method

What contains a documentation of specific view in CMU
SEI method?

List the specific view styles of 3 major viewpoints in
CMU SEI method and RUP / “4+1” method

What UML models and diagrams you would use to
describe the views in 3 major viewpoints in CMU SEI
method?

In which viewpoint in CMU SEI method are data models
used?

How would you document the cross-cutting concerns?

What is refinement?

29.4.18

What is the purpose of Context Diagrams?

How you would document variability?

How you would document architectural decisions?
Name different types of architectural decisions?
How views can be combined?

How you would document software interfaces?

What UML models and diagrams can be used to
document behavior?

How (based on what) you choose the views into the
architecture description?

What is contained in the software architecture
documentation package?

How you would represent architecture in the source
code?

Copyright © Alar Raabe 2018

Literature

* https://flylib.com/books/en/2.121.1/
« CMU SEI Library “Views and Beyond”:
— https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5019
— https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9685
— https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6497
— https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5939
— https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5847
— https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5471
— https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7095
— https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6997
— https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder SAD — Example AD
» https://www.researchgate.net/publication/238381956_A 41 View Model of Software Architecture
* http://www.iso-architecture.org/ieee-1471/templates/
* http://www.rm-odp.net/
» http://www.Icc.uma.es/~av/download/UML40ODP IS V2.pdf
* http://www.cs.cmu.edu/%7Eacme/docs/language_overview.html
* http://www.aadl.info/aadl/currentsite/
* http://sysml.org/
... Google “documenting software architecture” ...

79 29.4.18 Copyright © Alar Raabe 2018

Choosing the Views

CMU SEI Views & Beyond

Module Views Views Allocation Views Other Documentation
g 2 2
= > [
£ s g
-— @ [%2] =
- = S|E E 8§ & 2 8
S 5 L = E|8 5§ 2 3 g ¢
= = = = s 2| a) & ©
g S 2 S g 3|z S > 2 % e
£ T B = 2 S E = g ¥ £ 5 g E
S w @ S e 2 T© x|t £2 2 s = 39S
§ 28 5§ 5 5| E | £ 2 5|28 5§ = § £ %§
a =5 & S a = e E £ = 8§ = £ & &£
Project managers d d o] S
Members of development team d d d s s d d d| d
Testers and integrators d d d s S S | s d d| s | d S
Designers of other systems S d| o
Maintainers d d d d d d s s d d d d
Product-line application builders d d s | o]l s s S S | s s d s d S
Customers o] 0 o] S
End users S s o} S
Analysts d d s |d|d s d s d d s | d s
Infrastructure support personnel s | s S s d| d| o S
New stakeholders X X | X | x| X X X X X X | X | X X | X
Current and future architects d d d d d d d s d s|d d|d|d]|d
Key: d = detailed information, s = some details, 0 = overview information, x = anything

80 204.18 Pictures © CMU SEI & Pearson Education, Inc. Copyright © Alar Raabe 2018

“Marketecture”

Essential Software Architecture

|. Gorton (2006)

* A one page, typically informal depiction of the system’s structure and
interactions

« It shows the major components, their relationships and has a few well chosen

labels and text boxes that portray the design philosophies embodied in the
architecture

— A marketecture is an excellent vehicle for facilitating discussion by stakeholders
during design, build, review, and of course the sales process — it'’s easy to
understand and explain, and serves as a starting point for deeper analysis

81 29.4.18 Copyright © Alar Raabe 2018

Quality Attributes in the Documentation

. Any major design approach (such as an architecture pattern or style) chosen by the architect will have quality attribute
properties associated with it

* client-server — scalability, layering — portability, an information-hiding-based decomposition — modifiability, services —
interoperability, ...

* explaining the choice of approach (rationale) includes a discussion about the satisfaction of quality attribute requirements and
trade-offs incurred

. Individual architectural elements that provide a service often have quality attribute bounds assigned to them

* these quality attribute bounds are defined in the interface documentation for the elements, sometimes in the form of a Quality of
Service contract (or simply be recorded as properties that the elements exhibit)

. Quality attributes often impart a “language” of things that you would look for
* security involves things like security levels, authenticated users, audit trails, firewalls, and the like
* performance brings to mind buffer capacities, deadlines, periods, event rates and distributions, clocks and timers, and so on

* availability conjures up mean time between failure, failover mechanisms, primary and secondary functionality, critical and
noncritical processes, and redundant elements

. Architecture documentation often contains a mapping to requirements that shows how requirements (including quality
attribute requirements) are satisfied

. Every quality attribute requirement will have a constituency of stakeholders who want to know that that quality attribute
requirement is going to be satisfied

* for these stakeholders, the architect should provide a special place in the documentation’s introduction that either provides what
the stakeholder is looking for or tells the stakeholder where in the document to find it

29.4.18 Copyright © Alar Raabe 2018

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 54
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

