
Software (Systems)
Architecture Foundations

Lecture #4

Evaluating Architecture

Alar Raabe

29.4.18 Copyright © Alar Raabe 20182

Recap of Last Lecture

• Creating an architecture is not enough –

it has to be communicated properly to

let others use it properly to do their jobs

• Architecture documentation is for
– communication – primary communication vehicle between stakeholders
– education – introducing new people to the system
– designing – provides structure for design decisions
– analyzing – provides information to analyze the system properties (quality attributes)
– constructing – tells what to implement (must contain models to support automated

construction)

• Write documentation
– from the reader’s point of view, for clear purpose and record rationale
– avoiding unnecessary repetition and ambiguity
– using a standard organization

Designing an architecture without
documenting it, is like winking at a girl
in the dark – you know what you´re
doing, but nobody else does

E. Woods

Designing an architecture without
documenting it, is like winking at a girl
in the dark – you know what you´re
doing, but nobody else does

E. Woods

29.4.18 Copyright © Alar Raabe 20183

Recap of Last Lecture

• Document the relevant views (at least one per each major viewpoint), then add
documentation that applies to more than one view (combine some views to
reduce the number of views to create, keep consistent, and maintain)

• Choose the views depending on
– who the important stakeholders are and what are their concerns towards the system

– what structures are present in the architecture

– budget, schedule and what skills are available

• Additionally to the views
– document the major design decisions taken, how to use the architecture and the

ways architecture is allowed to change

– make a single element catalog for the whole architecture – because elements appear
in more than one view

– document a mapping to requirements, to show that no requirement was forgotten, nor
contradicted

– add a section to record open questions

Make your system capture its own
current architecture automatically

Make your system capture its own
current architecture automatically

29.4.18 Copyright © Alar Raabe 20184

Content

• Introduction
– Architecture and Requirements
– Software Quality Models

• Software Quality Attributes
– Categories of Software Quality Attributes
– Measuring Software Quality (CISQ)

• Evaluation of Software Architectures
– Quality Attribute Scenarios
– Architecture Trade-off Analysis Method (ATAM)
– Software Metrics

• Cost and Value of Architecture
– Value of Architecture
– Valuation of Architecture Decisions (Option Value of Architecture Decisions)

• Conclusions

Quality means doing it right
when no one is looking

Henry Ford

Quality means doing it right
when no one is looking

Henry Ford

29.4.18 Copyright © Alar Raabe 20185

Which one is Better ?

Pictures © Wikipedia & Wikimedia Commons

29.4.18 Copyright © Alar Raabe 20186

Evaluation will be done … either before or after !

Pictures © Wikipedia & Wikimedia Commons

29.4.18 Copyright © Alar Raabe 20187

Stakeholders Concerns → Requirements

• Concern – any interest in the system (purpose, functionality, structure,
behavior, cost, supportability, safety, interoperability)

• Requirement is a statement that expresses a need and its associated
constraints and conditions

– a condition or capability that must be met or possessed by a system, system
component, product, or service to satisfy an agreement, standard, specification, or
other formally imposed documents

• Software requirements specification is the basis for an agreement between
customers and developers (contractors or suppliers) – they express
concerns of stakeholders

You can have any combination of features the
Air Ministry desires, so long as you do not
also require that the resulting airplane fly

W. Messerschmidt

You can have any combination of features the
Air Ministry desires, so long as you do not
also require that the resulting airplane fly

W. Messerschmidt

29.4.18 Copyright © Alar Raabe 20188

Architecture and Requirements

• Functional requirements – state what the system must do, and how it must
behave or react to run-time stimuli (describe the functions of the system)

– satisfied by assigning an appropriate sequence of responsibilities throughout the
design (a fundamental architectural design decision)

• Quality attribute requirements (a.k.a. Non-Functional requirements) –
qualifications of the functional requirements or the overall system (e.g. how fast
the function must be performed, how resilient it must be to erroneous input, the
time to deploy the product or a limitation on operational costs)

– satisfied by the various structures designed into the architecture, and the behaviors
and interactions of the elements that populate those structures

• Constraints – a constraint is a design decision with zero degrees of freedom
(i.e. a design decision that’s already been made, an is no subject to
negotiations and design trade-offs)

– satisfied by accepting the design decision and reconciling it with other affected
design decisions

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 20189

Some Software Quality Models

• McCall’s Quality Model a.k.a. General Electrics Model (J. A. McCall, 1977)
– Product Revision – the ability of the product to undergo changes
– Product Operations – the characteristics of the product operation
– Product Transition – the adaptability of the product to new environments

• Boehm’s Quality Model (B. W. Boehm, 1978)
– As-is utility – how well, easily, reliably and efficiently can I use the software product as-is
– Maintainability – how easy is it to understand, modify and retest the software product
– Portability – how easy is to use the software product when the environment has been changed

• FURPS Quality Model (R. B. Grady 1992)
– Functionality – feature sets, capabilities, and security
– Usability – human factors, aesthetics, consistency of UI, help, user documentation and training materials
– Reliability – frequency and severity of failure, recoverability, predictability, accuracy, and mean time

between failures (MTBF)
– Performance – speed, efficiency, availability, accuracy, throughput, response time, recovery time, and

resource usage
– Supportability – testability, extensibility, adaptability, maintainability, compatibility, configurability,

serviceability, installability, and localizability

Qualities related to:
1. Using
2. Operating
3. Building/Changing

Qualities related to:
1. Using
2. Operating
3. Building/Changing

29.4.18 Copyright © Alar Raabe 201810

FURPS+ (Supplementary Requirements)

• Functionality – what the customer wants
(incl. security-related needs)?

• Usability – how effective is the product
from the user’s standpoint (aesthetics,
documentation, etc.)?

• Reliability – what’s the maximum
acceptable system downtime,
predictability, accuracy, …?

• Performance – how fast must it be,
what's the response time, throughput,
memory consumption?

• Supportability – is it testable, extensible,
serviceable, installable, configurable, can
it be monitored, ...?

IBM RUPIBM RUP

• Design constraints – how the software
must be built (e.g. computing platform,,
technologies, ...)?

• Implementation requirements – need to
adhere to standards (e.g. use of certain
development methods, etc.)?

• Interface requirements – what other
systems must this one interface with?

• Physical requirements – what hardware
(or premises) must the system be
deployable on?

29.4.18 Copyright © Alar Raabe 201811

Content

• Introduction
– Architecture and Requirements
– Software Quality Models

• Software Quality Attributes
– Categories of Software Quality Attributes
– Measuring Software Quality (CISQ)

• Evaluation of Software Architectures
– Quality Attribute Scenarios
– Architecture Trade-off Analysis Method (ATAM)
– Software Metrics

• Cost and Value of Architecture
– Value of Architecture
– Valuation of Architecture Decisions (Option Value of Architecture Decisions)

• Conclusions

Quality means doing it right
when no one is looking

Henry Ford

Quality means doing it right
when no one is looking

Henry Ford

29.4.18 Copyright © Alar Raabe 201812

Software Quality and Quality Attributes

• (Software) Quality – degree to which the system satisfies the stated and
implied needs of its various stakeholders, and thus provides value (ability of
system to meet customer or user needs, expectations, or requirements)

• (Software) Quality Attribute – a measurable or testable property of a system
that is used to indicate how well the system satisfies the needs of its
stakeholders

Quality is fitness for use

J. Juran

Quality is fitness for use

J. Juran

Business Goals

Non-Architectural
Solutions

Quality Attributes

Architecture

As the systems in physical world become more and
more software intensive the line between between
Software and System Qualities is vanishing !

As the systems in physical world become more and
more software intensive the line between between
Software and System Qualities is vanishing !

29.4.18 Copyright © Alar Raabe 201813

Quality Attributes addressed by Architecture

CMU SEICMU SEI

• Main
– Functionality

– Availability (Reliability)

– Interoperability

– Modifiability

– Performance (Efficiency)

– Security

– Testability

– Usability

• Business
– Time-to-Market

– Cost vs. Benefits

– Projected Life-Time

– Targeted Market

– Integration with Legacy

– Roll-out (Roll-back) Schedule

• Other
– Variability
– Portability
– Development Distributability

– Scalability

– Deployability

– Mobility

– Monitorability

– Safety

– Conceptual Integrity

– Quality in Use

– Marketability

29.4.18 Copyright © Alar Raabe 201814

Main Quality Attributes addressed by Architecture

• Availability – a property of system that it is ready to carry out its task when needed (incl. reliability
and recovery)

• Interoperability – quality of a system that enables it to work with other systems (incl. systems not
yet known)

• Modifiability – ability of a system to grow and change over time (cost and risk of making changes)

• Performance (efficiency) – system’s ability to meet timing requirements (the responsiveness of the
system)

• Security – a measure of the system’s ability to protect data and information from unauthorized
access while still providing access to people and systems that are authorized (incl. confidentiality,
integrity, and availability)

• Testability – the ease with which software can be made to demonstrate its faults through testing

• Usability – the ease for the user to accomplish a desired task and the kind of user support the
system provides (user experience)

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201815

Quality Attributes addressed by Architecture

• Functional Suitability – incl. Functional Completeness, Functional Correctness, Functional
Appropriateness

• Usability – incl. Appropriateness Recognizability, Learnability, Operability, User Error
Protection, User Interface Aesthetics, Accessibility

• Compatibility – incl. Co-existence, Interoperability

• Reliability – incl. Maturity, Availability, Fault Tolerance, Recoverability

• Performance Efficiency – incl. Time Behavior, Resource Utilization, Capacity

• Security – incl. Confidentiality, Integrity, Non-Repudiation, Authenticity, Accountability

• Maintainability – incl. Modularity, Reusability, Analyzability, Modifiability, Testability

• Portability – incl. Adaptability, Installability, Replaceability

ISO/IEC 25010 (9126)ISO/IEC 25010 (9126)

29.4.18 Copyright © Alar Raabe 201816

Categories of Software Quality Attributes

• CMU SEI
– End User’s Viewpoint

• Functionality

• Availability

• Interoperability

• Performance

• Security

• Usability

– Developer’s Viewpoint
• Modifiability

• Testability

– Business’s Viewpoint
• Time-to-Market

• Cost vs. Benefits

• Projected Life-Time

• Targeted Market

• Integration with Legacy

• Roll-out (Roll-back) Schedule

• ISO/IEC 25010
– End User’s Viewpoint

• Functional Suitability
• Reliability
• Compatibility
• Performance/Efficiency
• Security
• Usability

– Developer’s Viewpoint
• Maintainability
• Portability

– Business’s Viewpoint
• ??? MISSING ???

Characteristics of software that affect its
ability to satisfy stated and implied needs

Characteristics of software that affect its
ability to satisfy stated and implied needs

MISSING !MISSING !

29.4.18 Copyright © Alar Raabe 201817

Quality Attributes are often Conflicting
→ require Trade-Offs

You can’t eat your cake
and have it too !

You can’t eat your cake
and have it too !

29.4.18 Copyright © Alar Raabe 201818

Measuring Software Size & Quality

• Consortium for IT Software Quality (CISQ)
– organized (by CMU SEI & OMG) to develop standard measures for evaluating and bench-marking

the reliability, security, performance efficiency, and maintainability of IT software

• Provides standards for

– Automated Function Points – measures the functional size of software

– Automated Enhancement Points – measures the size of both functional and non-functional code
in one measure

– Automated Quality Characteristic Measures (based on quality characteristics from ISO 25010)
• Security – measures 22 violations in source code representing the most exploited security weaknesses in

software (defined by CWE/Sans Institute and OWASP)

• Reliability – measures 29 violations in source code impacting the availability, fault tolerance, and
recoverability of software

• Performance Efficiency – measures 15 violations in source code impacting response time and utilization
of processor, memory, and other resources

• Maintainability – measures 20 violations in source code impacting the comprehensibility, changeability,
testability, and scalability of software

– Automated Technical Debt – a measure of corrective maintenance effort due to violations
(weaknesses) remaining in a software application

Standard Quality MeasuresStandard Quality Measures

29.4.18 Copyright © Alar Raabe 201819

Content

• Introduction
– Architecture and Requirements
– Software Quality Models

• Software Quality Attributes
– Categories of Software Quality Attributes
– Measuring Software Quality (CISQ)

• Evaluation of Software Architectures
– Quality Attribute Scenarios
– Architecture Trade-off Analysis Method (ATAM)
– Software Metrics

• Cost and Value of Architecture
– Value of Architecture
– Valuation of Architecture Decisions (Option Value of Architecture Decisions)

• Conclusions

Quality means doing it right
when no one is looking

Henry Ford

Quality means doing it right
when no one is looking

Henry Ford

29.4.18 Copyright © Alar Raabe 201820

Evaluation of Software Architectures

• The earlier you find a problem in a software project, the better
– architectural decisions are later hard or impossible to change

– architectural decisions affect whether the system goals could be met

– many structures related to the building of the system are organized around the
architecture

• Architecture evaluation is a cheap way to avoid problems

• Architecture evaluation answers to
– Is this architecture suitable for the system for which it was designed?

– Which of two or more competing architectures is the most suitable one for the system at
hand?

• Architecture is suitable if
– The system that results from it will meet its quality goals (achieves required properties)

– The system can be built using the resources at hand (staff, budget, time, …) –
architecture is buildable

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201821

Quality Attribute Scenarios
(Provide Unambiguous & Testable Requirements)

• Stimulus – a condition that requires a response when it arrives at a system

• Source of stimulus – some entity (a human, a computer system, or any other actuator) that
generated the stimulus

• Environment – conditions under which the stimulus occurs (an overload, a normal operation, or
some other relevant state)

• Artifact – artifact that is stimulated (a collection of systems, the whole system, or some piece or
pieces of it)

• Response – the activity
undertaken as the result of
the arrival of the stimulus

• Response Measure – response
should be measurable in some
fashion so that the requirement
can be tested

Environment

Stimulus ResponseArtifact

Source of
Stimulus

Response
Measure

|'''
'|''

''|''''|''''|''''|''''|

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201822

Types of Quality Attribute Scenarios

• Use-case scenarios reflect the normal state or operation of the system

• Growth scenarios are anticipated changes to the system
– These can be about the execution environment (e.g., double the message traffic)

or about the development environment (e.g., change message format shown on
the operator’s console)

• Exploratory scenarios involve extreme changes to the system that may be
unanticipated and that may occur in undesirable situations

– Used to explore the boundaries of the architecture (e.g., message traffic grows
100 times, requiring the replacement of the operating system)

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201823

A Family of Quality Attribute Driven Methods
based on Scenarios

• Quality Attribute Workshop (QAW) – elicit and document quality attribute
requirements accurately, resulting scenario descriptions

• Attribute-Driven Design (ADD) – shape design decisions around quality attribute
considerations, resulting architecture description at least in three main views

• Architecture Trade-off Analysis Method (ATAM) – use scenarios to assess the
consequences of architectural decision alternatives in light of quality attribute
requirements (trade-offs among multiple quality attributes), resulting
consequences of architectural decisions (identified trade-offs and risks)

• Active Reviews for Intermediate Design (ARID) – blends Active Design Reviews
with the ATAM, to asses partial designs, resulting issues/problems

• Cost-benefit Analysis Method (CBAM) – facilitates architecture-based economic
analyses, resulting architectural strategies with associated cost and risks

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201824

Business
Drivers

Architectural
Plan

Quality
Attributes

Architectural
Approaches

Architectural
Decisions

Scenarios

Risk Themes Risks

Non-Risks

Sensitivity
Points

Tradeoffs

Analysis

Distilled into

Impacts

Architecture Trade-off Analysis Method (ATAM)

• Input
– A set of identified architectural

approaches
– “utility tree” – driving architectural

requirements
– The set of scenarios mapped onto

architecture

• Output
– A set of quality-attribute specific

questions and responses
– A set of identified risks
– A set of identified non-risks
– A set of risk themes that threaten

to undermine the business goals
for the system

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201825

Utility Tree

• Top-down elicitation to capture quality requirements by successively refining
the top-most system quality goal (utility) into more and more specific quality
goals (e.g. such as performance, modifiability, and availability)

• Utility tree has 4 levels
Utility →
 Quality Attributes →
 Attribute Concern →
 Scenarios

CMU SEICMU SEI

Pictures © CMU SEI

29.4.18 Copyright © Alar Raabe 201826

Travel Agency System Architecture

CMU SEICMU SEI

Example

Pictures © CMU SEI

29.4.18 Copyright © Alar Raabe 201827

SOA Quality Attribute Scenario (Modifiability)

Quality Attribute Scenario

… …

Scenario 2
Modifiability

• (Source) Business Analyst/Customer
• (Stimulus) Add a new airline provider that uses its own Web services interface.
• (Artifact) OPC (Order Processing Center)
• (Environment) Developers have already studied the airline provider interface

definition.
• (Response) New airline provider is added that uses its own Web services.
• (Response Measure) No more than 10 person-days of effort are required for the

implementation (legal and financial agreements are not included).
… …

CMU SEICMU SEI

Example

29.4.18 Copyright © Alar Raabe 201828

SOA Quality Attribute Scenario Analysis

Analysis for Scenario 2

Scenario Summary A new airline provider that uses its own Web services interface is added to the
system in no more than 10 person-days of effort for the implementation.

Business Goal(s) Permit easy integration with new business partners.

Quality Attribute Modifiability, interoperability

Architectural
Approaches and
Reasoning

• Asynchronous SOAP-based Web services
• Interoperability is improved by the use of document-literal SOAP messages for the

communication between OPC and external services.
• Adventure Builder runs on Sun Java System Application Server Platform
• Edition V8.1. This platform implements the WS-I Basic Profile V1.1, so

interoperability issues across platforms are less likely to happen.
Risks The design does not meet the requirement in this scenario, because it assumes

that all external transportation providers implement the same Web services interface
called ‘AirlinePOService’.
The design does not support transportation providers that offer their own service
interface.

Tradeoffs The homogenous treatment of all transportation providers in OPC increases
modifiability. However, intermediaries are needed to interact with external
providers that offer heterogeneous service interfaces, as in this scenario.
These intermediaries represent a performance overhead, because they may
require routing messages and extensive XML processing.

CMU SEICMU SEI

Example

29.4.18 Copyright © Alar Raabe 201829

Some more SOA Quality Attribute Scenarios

CMU SEICMU SEI

Example

• Performance
– A sporadic request for service ‘X’ is received by the server during normal operation → the system processes the

request in less than ‘Y’ seconds

• Availability
– An unusually high number of suspect service requests are detected (denial-of-service attack), and the system is

overloaded → the system logs the suspect requests, notifies the system administrators, and continues to
operate normally

• Security
– A third-party service with malicious code is used by the system → the third-party service is unable to access

data or interfere with the operation of the system, and the system notifies the system administrators

• Testability
– An integration tester performs integration tests on a new version of a service that provides an interface for

observing output → 90% path coverage is achieved within one person-week

• Interoperability
– A new business partner that uses platform ‘X’ is able to implement a service user module that works with our

available services in platform ‘Y’ in two person-days

• Modifiability
– A service provider changes the service implementation, but the syntax and the semantics of the interface do not

change → this change does not affect the service users

• Reliability
– A sudden failure occurs in the runtime environment of a service provider → after recovery, all transactions are

completed or rolled back as appropriate, so the system maintains uncorrupted, persistent data

29.4.18 Copyright © Alar Raabe 201830

Risk Themes

Availability

Architecture

Performance

Security

Modifiability

Integration

Process & Tools

Requirements

Allocation

Run-Time
Qualities

Development
Time Qualities

Documentation

Process

Big Picture

Unrecognized Needs

Product Lines

Awareness

Scope

Coordination

Organization

Risk Themes found in ATAM Evaluations

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201831

Cost-Benefit Analysis Method CBAM
(connecting architecture trade-offs to economics)

1. Choose scenarios and architectural strategies

2. Assess quality attribute benefits

3. Quantify the benefits of architectural strategies

4. Quantify the costs and schedule implications of the architectural strategies

5. Calculate the desirability of each option

6. Make architectural design decisions

CMU SEICMU SEI

Architectural strategies
Prioritization of strategies
Return on investment
Quantification of risk

Business goals
Preliminary scenarios
Architectural documentation

Facilitator
Scribe

Decision makers
Stakeholders

CBAM

29.4.18 Copyright © Alar Raabe 200832

Some Simple Software Metrics

• Cyclomatic Complexity (T. J. McCabe, 1976)
– measure of the complexity of a module's decision structure (number of linearly

independent paths through a module)

CC = Edges - Nodes + 2 * Parts

• Software Science (M. H. Halstead, 1977)
– Measurable properties

• n1 = number of unique or distinct operators

• n2 = number of unique or distinct operands

• N1 = number of total usage of all the operators

• N2 = number of total usage of all the operands

– Calculated properties
• Vocabulary: n = n1 + n2

• Length: N = N1 + N2 or estimated as (N' = n1 log2 n1 + n2 log2 n2)

• Volume: V = N log2 n

• Level: L’ = 2 n2 / n1 N2

• Intelligence Content (Complexity): I = L’ V = (2 V n2) / (n1 N2)

29.4.18 Copyright © Alar Raabe 200833

Software Metrics – Measuring OO Programs
(Chidamber & Kemerer)

• Coupling Between Object Classes (CBO) – number of other classes to which given class is coupled

 CBO = | { classes that given class references U classes that reference given class } |

• Lack of Cohesion in Methods (LCOM) – pairs of methods that share references to instance variables

 LCOM = P – Q if P > Q else 0

where
– P is # of pairs of methods that do not share instance variables

– Q is # of pairs of methods that share instance variables

• Others
– Weighted methods per Class (WMC) – number of methods (orig. sum of the complexities of the methods of a

class)

– Response Set for a class (RFC) – cardinality of the set of methods that can be executed (directly or indirectly) in
response to a message received by an object of that class – measures the degree of communication

– Depth of Inheritance Tree of a class (DIT)

– Number Of Children of a class (NOC)

29.4.18 Copyright © Alar Raabe 200834

Software Metrics – Measuring Entropy
(E. B. Allen)

• Entropy is the average number of bits needed to describe the dependencies a program unit has on the
rest of the system

• Entropy (average information (bits) per node)

 H(S) = Σ 1/(n+1) (-log2 PL)

– where S is a CDG (Code Dependency Graph), PL is probability of similar node, and n is the no. of nodes in S

• Total amount of information – estimated minimum description length

 I(S) = (n+1) H(S) = Σ -log2 PL

• Coupling (relationship between components or excess entropy)

 C(S) = Σ I(Si) – I(S)

– where i ranges on number of nodes

29.4.18 Copyright © Alar Raabe 200835

Software Metrics – Measuring Functional Volume

• Counting (IFPUG, …, OMG CISQ)
– External Inputs
– External Outputs
– External Inquiries
– Internal Logical Files
– External Interface Files

• Adjusting with
– type
– complexity
– 14 system characteristics (degree of influence 0..5)

• data communication, distributed functions, performance, heavily used configuration, transaction rate,
on-line data entry, end user efficiency, online update, complex processing, reusability, installation
ease, operational ease, multiple sites, facilitate change

Raising the number of function points to the
1.25 power predicts the number of defects

C. Jones

Raising the number of function points to the
1.25 power predicts the number of defects

C. Jones

Simple Average Complex
External Input 3 4 6
External Output 4 5 7
Internal Logical File 7 10 15
External Interface File 5 7 10
External Inquiry 3 4 6

FP=[∑
i=1

n

Weight i]×[0.65+0.01×∑
j=1

14

DegreeOfInfuenceOfGSC j]

Application

ILF EO
EI

EQ

EIF
Other

ApplicationsOther
Applications

EI
EO
EQ

29.4.18 Copyright © Alar Raabe 200836

Software Metrics – Measuring Functional Volume
“Simple Store”

• Description (Use Cases?)
– Find/Add Customers
– Check Customers’ Credit
– Enter Orders
– Check Availability of Goods

(if needed create back-orders)
– Produce Invoices and Accept Payments
– Update Stock & Customer Accounts

• Adjusting ...
– 0.65 (if nothing special)
– FPA = 108 * 0.65 = 70.2

– 0.65 + 0.05 (very easy to change)
– FPA = 108 * 0.70 = 75.6

– 0.65 + 0.01 * 14 * 5 (very complex)
– FPA = 108 * 1.35 = 145.8

Example

• Counting ...
– 6 External Inputs

• Customer No, Main Menu
• Customer Details, Order Details, Stock Delivery Details, Payment Details

– 6 External Outputs
• Credit Rating
• Invoice, Dispatch, Customer Details, Order Details, Stock Details

– 3 External Inquiries
• Customer Details, Order Details, Stock Details

– 4 Internal Logical Files
• Customers, Goods, Orders, Transactions

– 1 External Interface Files
• Customer Credit Details

Simple Average Complex TOTAL
External Input 2 3 4 4 6 22
External Output 1 4 5 5 7 29
Internal Logical File 7 4 10 15 40
External Interface File 1 5 7 10 5
External Inquiry 3 3 4 6 12
Unadjusted FPs 108

70.2 FPAs for Java … (C. Jones)
3.7 KLOC
164 test cases needed
256 potential defects
6.7 (Estonian☺) man-months

70.2 FPAs for Java … (C. Jones)
3.7 KLOC
164 test cases needed
256 potential defects
6.7 (Estonian☺) man-months

29.4.18 Copyright © Alar Raabe 201837

Content

• Introduction
– Stakeholders concerns → Requirements

– Architecture and Requirements

– Software Quality Models

• Software Quality Attributes
– Categories of Software Quality Attributes
– Measuring Software Quality (CISQ)

• Evaluation of Software Architectures
– Quality Attribute Scenarios

– Architecture Trade-off Analysis Method (ATAM)

– Software Metrics

• Cost and Value of Architecture
– Value of Architecture

– Valuation of Architecture Decisions (Option Value of Architecture Decisions)

• Conclusions

Quality means doing it right
when no one is looking

Henry Ford

Quality means doing it right
when no one is looking

Henry Ford

29.4.18 Copyright © Alar Raabe 201838

Value of Software Architecture

Value that Architecture provides

• Users and operators of the system
– High availability and performance
– Survival from partial failure

• Acquirers and owners of the system
– Easy integration into environment

• Suppliers and developers of the system
– Speed and freedom
– Guidance
– Reuse of effort, skills and know-how
– Ease of integration

• Builders and maintainers of the system
– Survival of extension, adaptation,

requirements changes, platform changes, etc.

Value of Architecture (Description)

• Users and operators of the system
– Understand the external system behavior
– Understand how to operate system

• Acquirers and owners of the system
– Understand economical issues connected to

the system

• Suppliers and developers of the system
– Plan development and construction
– Estimate system properties

• Builders and maintainers of the system
– Understand the system internals

80% of time during maintenance
is spent in design-rediscovery

Davidson, 2002

80% of time during maintenance
is spent in design-rediscovery

Davidson, 2002

29.4.18 Copyright © Alar Raabe 201839

Measuring Value of Software Architecture

• Value of Software Architecture
– Cost of realization of risks compared to cost of architecture

• Value of Software Architecture Description
– Cost of performing activities without architecture description compared to cost

of documenting architecture

valuearch=∑
i=1

n

cost risk concerni −costarch

valuearch .desc=∑
i=1

n

cost performingactivity i−cost arch. desc

Focus on quality and cost will decrease
Focus on costs and quality will decrease

W. E. Deming

Focus on quality and cost will decrease
Focus on costs and quality will decrease

W. E. Deming

29.4.18 Copyright © Alar Raabe 201840

Real Options for Valuation of Software Architecture

• Applicable when
– there is Uncertainty
– there is Business Change
– New Information should/could be exploited when it comes available
– Action today should create

• Possibility of future design choices
• Possibility of future value

• Strategic Value with Real Options

• Valuation of real options
– Binomial lattices – decision trees with probabilities

 V
option

 = (p V
up

 + (1-p) V
down

) / (1+r)
 p

risk neutral
 = (1+r-d) / u-d

– Markov processes
– Monte Carlo simulations

NPV strategic=NPVtraditional+ Valuereal .options

Real option

• is a right (opportunity), but not an obligation
to make a decision in the future

• might be exercised multiple times (different
from financial option)

Real option

• is a right (opportunity), but not an obligation
to make a decision in the future

• might be exercised multiple times (different
from financial option)

V

Vu

Vd

Vu2

Vud
q

1-q

Vd2

t = 0 1 2 3

29.4.18 Copyright © Alar Raabe 201842

Valuation of Software Architecture Decision as Option

• Suppose that
– At first step of the project it is possible the make €1000 investment, which can

with 50% probability be sufficient, but with 50% probability there will be need to
invest €3000 more, to get business profit with NPV

profit
 €2200

• Then
NPV

traditional
 = €2200 - (€1000 + 50% * €3000) = - €300 → don't invest

• But
– as the project can be canceled, when worst case materializes, then

NPV
strategic

 = 50% * €2200 - €1000 = €100 → invest – good investment!

(investment of €1000 creates an option to get €2200 with 50% probability)

Value
option

 = NPV
strategic

 – NPV
traditional

 = €400

Example

29.4.18 Copyright © Alar Raabe 201843

Design Principles Guided by Economic Value

• Real Option Theory – Qualitative Design Principles (K. Sullivan)
– If at any time, the expected value of future profits discounted to given time is at least by value

of investment opportunity more than the direct costs, then commit to the design decision,
otherwise do not

– If the expected present value of the future profits that would flow from choice exceeds the
direct cost of implementing it, then go ahead and implement the choice, otherwise implement
other choice

– If the expected present value of future profits that would flow from restructuring exceeds the
direct cost of restructuring, then go ahead and restructure, otherwise do not

– If the cost to effect a software decision is sufficiently low, then the benefit of investing to effect
it immediately outweighs the benefit of waiting, so the decision should be made immediately

– With other factors, including the static NPV, remaining the same, the incentive to wait for
better information before effecting a design decision increases with risk (ie, with the spread, in
possible benefits)

– The incentive to wait before investing increases with the likelihood of unfavourable future
events occurring

– All else being equal, the value of the option to delay increases with variance in future costs

29.4.18 Copyright © Alar Raabe 201844

Calculating Technical Dept

• Technical Debt – metaphor by W. Cunningham to describe
effect of intentional decisions to release sub-optimal code to
achieve some objectives (e.g. faster delivery)

– S. McConnell extended Technical Debt to include both
intentional and unintentional violations of good architectural
and coding practice

• Standard way of measuring Technical Debt based on source
code analysis (OMG CISQ) – looking for the specific violation
patterns

– Opportunity cost — benefits that could have been achieved had
resources been put on new capability rather than retiring
technical debt

– Liability — business costs related to outages, breaches,
corrupted data, etc.

– Interest — continuing IT costs attributable to the violations
causing technical debt, i.e, higher maintenance costs, greater
resource usage, etc.

– Principal — cost of fixing problems remaining in the code after
release that must be remediated

Pictures © OMG

1. Detect occurrences of patterns specified as
weaknesses by OMG approved specifications

2. Assign an estimate of the amount of time to remediate
each occurrence of a weakness

3. Collect qualification information about the occurrences
of each weakness

4. Compute an adjustment factor as a function of
qualification information about each of the occurrences
to negatively or positively impact the effort estimate

5. Sum the total amount of time across all the
occurrences for all 86 violations (variations in labor
costs, skill levels, or currencies must be made based
on local conditions)

OMG CISQOMG CISQ

29.4.18 Copyright © Alar Raabe 201845

Content

• Introduction
– Architecture and Requirements
– Software Quality Models

• Software Quality Attributes
– Categories of Software Quality Attributes
– Measuring Software Quality (CISQ)

• Evaluation of Software Architectures
– Quality Attribute Scenarios
– Architecture Trade-off Analysis Method (ATAM)
– Software Metrics

• Cost and Value of Architecture
– Value of Architecture
– Valuation of Architecture Decisions (Option Value of Architecture Decisions)

• Conclusions

Quality means doing it right
when no one is looking

Henry Ford

Quality means doing it right
when no one is looking

Henry Ford

29.4.18 Copyright © Alar Raabe 201846

Conclusions

• (Software) Quality
– degree to which the system satisfies the stated and implied needs of its various stakeholders, and

thus provides value (ability of system to meet customer or user needs, expectations, or
requirements)

• (Software) Quality Attribute
– a measurable or testable property of a system that is used to indicate how well the system satisfies

the needs of its stakeholders

• Economic Value of (Software) Architecture
– Value of Architecture = cost of realization of risks compared to cost of architecture

– Value of Architecture Description = cost of performing activities without architecture description
compared to cost of documenting architecture

• (Software) Architecture creates choices/options, which have value – designing and building
an architecture is an investment activity

– Architecture Investment is a real option
• provides an opportunity (right, but not an obligation) to make a decision in the future

• might be exercised multiple times (different from financial option)

It is not about bits, bytes and
protocols, but profits, losses
and margins

Lou Gerstner

It is not about bits, bytes and
protocols, but profits, losses
and margins

Lou Gerstner

29.4.18 Copyright © Alar Raabe 201847

Thank You!

36. The soft overcomes the hard. The
slow overcomes the fast. Let your
workings remain a mystery. Just
show people the results.

Lao Tsu (by Philippe Kruchten)

36. The soft overcomes the hard. The
slow overcomes the fast. Let your
workings remain a mystery. Just
show people the results.

Lao Tsu (by Philippe Kruchten)

29.4.18 Copyright © Alar Raabe 201848

Questions

• List main software quality attributes

• How to evaluate the goodness of an
architecture?

• What are parts of quality attribute
scenario?

• Bring examples of quality attribute
scenario for … ?

• Who wants to pay for documents?

• Who wants to pay for exploring of
various design alternatives?

• ...

• How to measure complexity?

• How to measure functional volume?

• How to measure the cost and value of
design knowledge?

• How to measure cost of having (or not
having) good architecture?

• How to measure cost of having (or not
having) good documentation?

• When it makes sense to delay the
architecture decision?

• ...

29.4.18 Copyright © Alar Raabe 201849

Literature

• https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177

• https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8443

• http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

• http://it-cisq.org/

• http://repository.cmu.edu/cgi/viewcontent.cgi?article=1327&context=sei

•

• https://pdfs.semanticscholar.org/2192/41cd2eb39264a32ed37f75252d17dfb11663.pdf

• http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.4666&rep=rep1&type=pdf

• http://www.ifpug.org/

• http://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economic
s-and-Function-Point-Metrics-Capers-Jones.pdf

• http://csse.usc.edu/tools/COCOMOII.php

• https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8307

• https://www.researchgate.net/publication/220210234_Using_Binomial_Decision_Trees_to_Solve_
Real-Option_Valuation_Problems

•

• … Google “software quality attribute” + “value of architecture” …

29.4.18 Copyright © Alar Raabe 201850

Joining Attribute-Based Methods

CMU SEICMU SEI

Pictures © CMU SEI

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8443
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://it-cisq.org/
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1327&context=sei
https://pdfs.semanticscholar.org/2192/41cd2eb39264a32ed37f75252d17dfb11663.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.4666&rep=rep1&type=pdf
http://www.ifpug.org/
http://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf
http://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf
http://csse.usc.edu/tools/COCOMOII.php
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=8307
https://www.researchgate.net/publication/220210234_Using_Binomial_Decision_Trees_to_Solve_Real-Option_Valuation_Problems
https://www.researchgate.net/publication/220210234_Using_Binomial_Decision_Trees_to_Solve_Real-Option_Valuation_Problems

29.4.18 Copyright © Alar Raabe 201851

Evaluation of Software Architectures

1. Present Business Drivers
– the participants are expected to understand the system and its business goals and their priorities

2. Present Architecture
– all participants are expected to be familiar with the system (a brief overview of the architecture, using at

least Module and Component & Connector views, and 1 - 2 scenarios are traced through these views)

3. Identify Architectural Approaches
– the architecture approaches for specific quality attribute concerns are identified by the architect

4. Generate Quality Attribute Utility Tree
– utility tree is created/updated, with new scenarios, new response goals, or new scenario priorities and risk

assessments

5. Analyze Architectural Approaches
– mapping the highly ranked scenarios onto the architecture

6. Present Results
– review the existing and newly discovered risks, non-risks, sensitivities, and trade-offs and discusses

whether any new risk themes have arisen

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201852

Generic Scenario for Availability

Possible Values

Source Internal/external: people, hardware, software, physical infrastructure,
physical environment

Stimulus Fault: omission, crash, incorrect timing, incorrect response

Artifact Processors, communication channels, persistent storage, processes

Environment Normal operation, startup, shutdown, repair mode, degraded operation,
overloaded operation

Response

Prevent the fault from becoming a failure
Detect the fault:
■ Log the fault
■ Notify appropriate entities (people or systems)
Recover from the fault:
■ Disable source of events causing the fault
■ Be temporarily unavailable while repair is being effected
■ Fix or mask the fault/failure or contain the damage it causes
■ Operate in a degraded mode while repair is being effected

Response Measure

Time or time interval when the system must be available
Availability percentage (e.g., 99.999%)
Time to detect the fault
Time to repair the fault
Time or time interval in which system can be in degraded mode
Proportion (e.g., 99%) or rate (e.g., up to 100 per second) of a certain
class of faults that the system prevents, or handles without failing

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201853

Generic Scenario for Interoperability

Possible Values

Source A system initiates a request to interoperate with another system

Stimulus A request to exchange information among system(s)

Artifact The systems that wish to interoperate

Environment
System(s) wishing to interoperate are discovered at runtime or known prior to
runtime

Response

One or more of the following:
■ The request is (appropriately) rejected and appropriate entities (people or
systems) are notified
■ The request is (appropriately) accepted and information is exchanged
successfully
■ The request is logged by one or more of the involved systems

Response Measure
One or more of the following:
■ Percentage of information exchanges correctly processed
■ Percentage of information exchanges correctly rejected

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201854

Generic Scenario for Modifiability

Possible Values

Source End user, developer, system administrator

Stimulus A directive to add/delete/modify functionality, or change a quality attribute,
capacity, or technology

Artifact Code, data, interfaces, components, resources, configurations, . . .

Environment Runtime, compile time, build time, initiation time, design time

Response

One or more of the following:
■ Make modification
■ Test modification
■ Deploy modification

Response Measure

Cost in terms of the following:
■ Number, size, complexity of affected artifacts
■ Effort
■ Calendar time
■ Money (direct outlay or opportunity cost)
■ Extent to which this modification affects other functions or quality attributes
■ New defects introduced

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201855

Generic Scenario for Performance

Possible Values

Source Internal or external to the system

Stimulus Arrival of a periodic, sporadic, or stochastic event

Artifact System or one or more components in the system

Environment
Operational mode:
normal, emergency, peak load, overload

Response Process events, change level of service

Response Measure Latency, deadline, throughput, jitter, miss rate

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201856

Generic Scenario for Security
Possible Values

Source
Human or another system which may have been previously identified (either
correctly or incorrectly) or may be currently unknown (attacker may be from
outside or from inside the organization)

Stimulus
Unauthorized attempt is made to display data, change or delete data, access
system services, change the system’s behavior, or reduce availability

Artifact System services, data within the system, a component or resources of the
system, data produced or consumed by the system

Environment
The system is either online or offline; either connected to or disconnected
from a network; either behind a firewall or open to a network; fully
operational, partially operational, or not operational

Response

Transactions are carried out in a fashion such that
■ Data or services are protected from unauthorized access
■ Data or services are not being manipulated without authorization
■ Parties to a transaction are identified with assurance
■ The parties to the transaction cannot repudiate their involvements
■ The data, resources, and system services will be available for legitimate
use
The system tracks activities within it by
■ Recording access or modification, and access data, resources, or services
■ Notifying appropriate entities when an apparent attack is occurring

Response Measure

One or more of the following:
■ How much of a system is compromised when a particular component or
data value is compromised
■ How much time passed before an attack was detected
■ How many attacks were resisted
■ How long does it take to recover from a successful attack
■ How much data is vulnerable to a particular attack

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201857

Generic Scenario for Testability

Possible Values

Source Unit testers, integration testers, system testers, acceptance testers, end
users, either running tests manually or using automated testing tools

Stimulus

A set of tests is executed due to the completion of a coding increment such
as a class layer or service, the completed integration of a subsystem, the
complete implementation of the whole system, or the delivery of the system
to the customer

Artifact The portion of the system being tested

Environment Design time, development time, compile time, integration time, deployment
time, run time

Response
One or more of the following:
execute test suite and capture results, capture activity that resulted in the
fault, control and monitor the state of the system

Response Measure

One or more of the following:
effort to find a fault or class of faults, effort to achieve a given percentage of
state space coverage, probability of fault being revealed by the next test,
time to perform tests, effort to detect faults, length of longest dependency
chain in test, length of time to prepare test environment, reduction in risk
exposure (size(loss) × prob(loss))

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201858

Generic Scenario for Usability

Possible Values

Source End user, possibly in a specialized role

Stimulus End user tries to use a system efficiently, learn to use the system, minimize
the impact of errors, adapt the system, or configure the system

Artifact System or the specific portion of the system with which the user is interacting

Environment Runtime or configuration time

Response The system should either provide the user with the features needed or
anticipate the user’s needs

Response Measure

One or more of the following:
task time, number of errors, number of tasks accomplished, user satisfaction,
gain of user knowledge, ratio of successful operations to total operations, or
amount of time or data lost when an error occurs

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 200859

Operations for Realizing Quality Attributes

• Separation is an operation that places a distinct piece of functionality into a distinct
component that has a well-defined interface to the rest of the world

• Abstraction is the operation of creating a virtual machine, a component whose function is to
hide its underlying implementation

• Compression is the operation of removing layers or interfaces that separate system functions
(the opposite of separation)

• Composition is the operation of combining two or more system components into a larger
component (Uniform Composition is a restriction of this operation, limiting the composition
mechanisms to a small set)

• Replication is the operation of duplicating a component within an architecture (used to
enhance reliability (fault tolerance) and performance)

• Resource sharing is an operation that encapsulates either data or services and shares them
among multiple independent consumers (typically there is a resource manager that provides
the sole access to the resource)

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 200860

Operations for Realizing Quality Attributes

Operation

Software Quality Attribute

Scalability Modifiability Integrability Portability Performance Reliability
Ease of
Creation

Reusability

Separation + + + + +/- +/- +

Abstraction + + + + - + +

Compression - - - - + +/- -

Uniform
Composition

+ + +

Replication - - - +/- + - -

Resource
Sharing

+ + + +/- - + +/-

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 200861

Architectural Design Decisions for Quality Attributes

• Allocation of responsibilities

• Coordination model

• Data model

• Management of resources

• Mapping among architectural elements

• Binding time decisions

• Choice of technology

CMU SEICMU SEI

29.4.18 Copyright © Alar Raabe 201862

Architecture and Quality Attributes

• For high performance
– exploit potential parallelism by decomposing the work into cooperating or synchronizing processes

– manage the inter-process and network communication volume and data access frequencies

– be able to estimate expected latencies and throughputs

– identify potential performance bottlenecks

• For high accuracy, pay attention to how the data elements are defined and used and how their
values flow throughout the system

• For security
– legislate usage relationships and communication restrictions among the parts

– identify parts of the system where an unauthorized intrusion will do the most damage

– possibly introduce special elements that have earned a high degree of trust

• For modifiability and portability, carefully separate concerns among the parts of the system, so
that when a change affects one element, that change does not ripple across the system

• For deploying the system incrementally (releasing successively larger subsets), keep the
dependency relationships among the pieces untangled, to avoid the “nothing works until everything
works” syndrome

29.4.18 Copyright © Ala Raabe 200863

Software Architecture
Kinds of Structures & Quality Attributes

Kind Structure Elements Relations Decisions Quality Attribute

Module
Structures

Decomposition Module sub-module-of
Decomposition, structuring,
information hiding, encapsulation

Modifiability

Uses Module uses (requires) Usable/useful sub-sets, extensions
Extensibility,
Subsetability

Layers Layer
uses (requires),
provides
abstraction

Portability, ease of change and
abstraction “virtual machines”

Portability

Class Class, Object
is-a
(specializes),
instance-of, ...

Reuse, commonality and planned
incremental extension

Modifiability,
Extensibility

Data Model Data Entity
{one,many}-to-
{one,many}

Global data structures consistency
Modifiability,
Performance

Component
& Connector
Structures

Service
Service, Bus,
Registry, ...

runs-
concurrently,
excludes,
precedes, ...

Independent development of
components

Interopertability,
Modifiability

Concurrency Process, Thread can-run-parallel Parallelism, access to resources
Performance,
Availability

Allocation
Structures

Deployment
Component,
Hardware Devices, ...

allocated-to,
migrates-to

Performance, security, availability
Performance,
Security,
Availability

Implementation
Module, File
Structure, ...

stored-in
Development, integration and
testing

Development
Efficiency

Work
Assignment

Module, Organization
Unit, ...

assigned-to
Project management and
communication

Development
Efficiency

CMU SEICMU SEI

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Quality Attribute Tradeoff Points
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Example: SOA Quality Attribute Scenario
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Measuring Value of Software Architecture
	Slide 40
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

