
Software (Systems)
Architecture Foundations

Lecture #6

From One to Many Systems

Alar Raabe

5.6.18 Copyright © Alar Raabe 20182

Recap of Last Lecture

• It is important to understand the larger context
– what is the super-system and how it changes
– what are the other (peer) systems in the super-system
– what are the constraints that super-system imposes

• System of Systems
– a collection of systems, that pool their resources and capabilities
– often with separate management and authority
– offer more functionality and performance than simply the sum of the constituent systems

• Enterprise is a complex system – a System of Systems

• Isolate your system from the environment/context – build for
– interoperability – reconcile differences between interfaces
– change – detect changes and adapt to it
– failure and unexpected – detect failures and recover from these
– security – detect threats and neutralize these

Strategy without tactics is the
slowest route to victory Tactics
without strategy is the noise
before defeat

Sun Tzu

Strategy without tactics is the
slowest route to victory Tactics
without strategy is the noise
before defeat

Sun Tzu

5.6.18 Copyright © Alar Raabe 20183

Recap of Last Lecture

• When architecting System of Systems,
– concentrate on interfaces (build platforms)
– provide collaboration incentives
– design so that value can be delivered even by incomplete System of Systems

• When analyzing/designing a complex system
– ask WHY, WHAT, HOW, WHO, WHEN, WHERE
– describe the answers for different stakeholders

(interested parties)

• Enterprise Architecture is a
– holistic view on whole enterprise – a description of the enterprise to provides a

common understanding
– strategic planning tool – a bridge between Strategy and Execution

• Reference architectures provide for a particular domain, a common vocabulary,
reusable designs and industry best practices

Strategy without tactics is the
slowest route to victory Tactics
without strategy is the noise
before defeat

Sun Tzu

Strategy without tactics is the
slowest route to victory Tactics
without strategy is the noise
before defeat

Sun Tzu

5.6.18 Copyright © Alar Raabe 20184

Content

• From one system to many

• System Families
– Product-line architectures

• Model-driven development
– Model as Primary Artifact
– Generative Programming
– Feature Modeling

• Conclusions

Any customer can have a
car painted any color that
he wants so long as it is
black

Henry Ford

Any customer can have a
car painted any color that
he wants so long as it is
black

Henry Ford

5.6.18 Copyright © Alar Raabe 20185

From One to Many

• Standardization

Pictures © Wikipedia & Wikimedia Commons

5.6.18 Copyright © Alar Raabe 20186

From One to Many
Balancing Standardization with Variability

• Platform Architecture

Pictures © Wikipedia & Wikimedia Commons & Wolkswagen Group

5.6.18 Copyright © Alar Raabe 20187

Content

• From one system to many

• System Families
– Product-line architectures

• Model-driven development
– Model as Primary Artifact
– Generative Programming
– Feature Modeling

• Conclusions

Any customer can have a
car painted any color that
he wants so long as it is
black

Henry Ford

Any customer can have a
car painted any color that
he wants so long as it is
black

Henry Ford

5.6.18 Copyright © Alar Raabe 20188

System/Program Families

• To industrialize the software industry, software components
(routines), widely applicable to different machines and users,
should be available in families arranged according to precision,
robustness, generality and time/space performance
(M. D. McIlroy, 1968)

• A program can be viewed as an ordered set of progressively less abstract forms, where in all next
forms one or more concepts used above are explained (refined) – the family of programs becomes
the set of forms from a given collection that can be strung into a fitting chain of refinements
(E. W. Dijkstra, 1969)

• We consider a set of programs to be a program family if they have so much in common that it pays
to study their common aspects before looking at the aspects that differentiate them
(D. L. Parnas, 1976)

• The members of a program family can vary by
– implementation methods used – a set of programs which meets the module specifications form the family
– variation in the external parameters – programs differing in the values of those parameters form the family
– use of subsets – programs consisting of a subset of the parts described by a set of module specifications form

the family

When developing a family of
programs, develop, and document,
the common/shared aspects first

D. L. Parnas

When developing a family of
programs, develop, and document,
the common/shared aspects first

D. L. Parnas

5.6.18 Copyright © Alar Raabe 20189

Product-Line Architecture
a blue-print for creating a family of Systems

• A software product-line is a set of

– software systems that share a common, managed set of
features satisfying the specific needs of a particular market
segment or mission and that are developed from a common
set of core assets in a prescribed way

– reusable assets (called core assets, including designs and
their documentation, user manuals, project management
artifacts, test cases, etc.) based on a common architecture
and the software elements that populate that architecture

• A product-line architecture is the architecture with built-
in variation points – decisions, intentionally left open

– Each product in the product line may have a slightly different
architecture – these are instances of the product-line
architecture

– The architecture for a product (“instance” of product-line
architecture) is created when builder exercises the variation
mechanisms that the product-line architect has put in place

Product-Line
Architecture

Requirements

Products

Core Assets

CMU SEICMU SEI

5.6.18 Copyright © Alar Raabe 201810

Product-Line Architecture
Benefits

• Overall benefits
– Large scale productivity gains and more efficient use of human resources
– Decreased time to market and increased market agility
– Increased product quality, customer satisfaction and decreased product risk
– Ability of mass customization, to maintain market presence and to sustain growth

• Directs cost savings for each product after core assets have been built
– Requirements – product requirements are deltas to established common requirements base
– Architecture – an architecture for a software system represents a large investment
– Components – up to 100% of the components in the core asset base are used in each product
– Modeling and analysis – models and the associated analyses are existing for core assets
– Testing – generic test plans, processes, data, harnesses, etc. exist, and need only be tailored
– Planning – budgets and schedules from previous projects provide basis for the planning
– Processes – the overall software development process is in place and has been used before
– People – fewer people are required to build products, and the people are more easily

transferred

CMU SEICMU SEI

A software product line approach provides options to future
market opportunities – permit low cost/low/risk experiments

A software product line approach provides options to future
market opportunities – permit low cost/low/risk experiments

5.6.18 Copyright © Alar Raabe 201811

Product-Line Architecture
Some Variation Mechanisms

• Inclusion or omission of elements
– can be reflected in the build procedures for different products, or the implementation of an element

can be conditionally compiled based on some parameter indicating its presence or absence

• Inclusion of a different number of replicated elements

• Selection/substitution of different versions of elements that have the same interface but
different behavioral or quality attribute characteristics

– can occur at compile time, build time, or runtime (via static libraries, dynamic link libraries, or add-
ons (e.g., plug-ins, extensions, and themes), which add or modify application functionality at runtime)

• Extension points – identified places in the architecture where additional behavior or
functionality can be safely added

• Reflection – the ability of a program to manipulate data on itself or its execution environment
or state (reflective programs can adjust their behavior based on their context)

• Overloading – reusing a named functionality to operate on different types (promotes code
reuse, but at the cost of understandability and code complexity)

CMU SEICMU SEI

5.6.18 Copyright © Alar Raabe 201812

Product-Line Architecture
Common Variation Mechanisms

Variation Mechanism Properties Relevant to Building the
Core Assets

Properties Relevant to Exercising
the Variation Mechanism When Building Products

Inheritance; specializing or
generalizing a particular
class

Cost: Medium
Skills: Object-oriented languages

Stakeholder: Product developers
Tools: Compiler
Cost: Medium

Component substitution
Cost: Medium
Skills: Interface definitions

Stakeholder: Product developer, system administrator
Tools: Compiler
Cost: Low

Add-ons, plugins
Cost: High
Skills: Framework programming

Stakeholder: End user
Tools: None
Cost: Low

Templates
Cost: Medium
Skills: Abstractions

Stakeholder: Product developer, system administrator
Tools: None
Cost: Medium

Parameters
(including text pre-
processors)

Cost: Medium
Skills: No special skills required

Stakeholder: Product developer, system administrator, end user
Tools: None
Cost: Low

Generator
Cost: High
Skills: Generative programming

Stakeholder: System administrator, end user
Tools: Generator
Cost: Low

Aspects
Cost: Medium
Skills: Aspect-oriented programming

Stakeholder: Product developer
Tools: Aspect-oriented language compiler
Cost: Medium

Runtime conditionals
Cost: Medium
Skills: No special skills required

Stakeholder: None
Tools: None
Cost: No development cost; some performance cost

Configurator
Cost: Medium
Skills: No special skills required

Stakeholder: Product developer
Tools: Configurator
Cost: Low to medium

CMU SEI CMU SEI

Example

5.6.18 Copyright © Alar Raabe 201813

Content

• From one system to many

• System Families
– Product-line architectures

• Model-driven development
– Model as Primary Artifact
– Generative Programming
– Feature Modeling

• Conclusions

Any customer can have a
car painted any color that
he wants so long as it is
black

Henry Ford

Any customer can have a
car painted any color that
he wants so long as it is
black

Henry Ford

5.6.18 Copyright © Alar Raabe 201814

Using Models in Software Development

• Models as Descriptions and Illustrations (Documentation)

• Models as Primary Artifacts (Models as Software)

Model Generator

Model Software

Software

<<Describes>>
<<Uses>>

<<Creates>>

<<Creates>>

5.6.18 Copyright © Alar Raabe 201815

Automation of Programming →
Excursion into the History

• Automation of coding (modelling solution)
– FORTRAN (1954), Lisp (1956)
– APT (MIT 1957) ← First DSL !
– Algol (1958)

• Automation of programming (modelling problem)
– Problem-Oriented Languages/Systems (program synthesis)

• ICES (MIT 1961) → COGO, STRUDL, BRIDGE, ...
• PRIZ (ETA KübI)

– Application Generators (program generation)
• Compiler Generators – Yacc/Lex (1979)
• Application Generators – MetaTool & GENII/GENOA & ... (Bell Labs 1980s)

– CASE (Computer-Aided Software Engineering) tools (software generation)
• GraphiText, DesignAid (Nastec 1982)

What has been will be again,
what has been done will be done again;
there is nothing new under the sun.

 Ecclesiastes 1:9

What has been will be again,
what has been done will be done again;
there is nothing new under the sun.

 Ecclesiastes 1:9

5.6.18 Copyright © Alar Raabe 201816

Analysis Model Implementation Model
(Concrete Software)

«transformation»

Analysts

Transformation
Rules

Analyst /
Architect

Analysis Model
Problem Domain

Analysis Model
Solution Domain

Architect

Model-Driven Software Development Approach

Solution knowledge is often
not separated from technical

knowledge !

Solution knowledge is often
not separated from technical

knowledge !

Language

Generic
Solution

Problem domain
knowledge

System requirements

Solution domain
knowledge

5.6.18 Copyright © Alar Raabe 201817

Generative Programming

Configuration knowledge
●illegal feature combinations
●default settings
●default dependencies
●construction rules
●optimizations

Problem Space
●domain specific
concepts
●features

Solution Space
●elementary
components
●maximum
combinability
●minimum
redundancy

Czarnecki, EiseneckerCzarnecki, Eisenecker

5.6.18 Copyright © Alar Raabe 201818

Generative Programming

Czarnecki, EiseneckerCzarnecki, Eisenecker

Configuration knowledge
●illegal feature combinations
●default settings
●default dependencies
●construction rules
●optimizations

Problem Space
●domain specific
concepts
●features

Generator
Reflection

Components +
System Family
Architecture

Domain Specific
Language (DSL)

Solution Space
●elementary
components
●maximum
combinability
●minimum
redundancy

Generator Technologies
●simple model traversal
●templates and frames
●transformation systems
●languages with meta-
programming support
●extensible programming systems

DSL Technologies
●programming language
●extensible languages
●textual languages
●graphical languages
●interactive wizards
●any mixture of above

Component Technologies
●generic components
●component models
●AOP approaches

5.6.18 Copyright © Alar Raabe 201819

Comparing to the Traditional Development

Implementation Platform

Solution Description

Implementation Platform

(Architecture)

Solution Description

Traditional Model-Driven

Problem Description Problem Description

Reducing the gapReducing the gap

5.6.18 Copyright © Alar Raabe 201820

Comparing Model-Driven Method with Traditional

• Effort for First Iteration – basic CRUD application

• Manually coded Claims application
– Volume

• Domain Model: 30 entities, 30 relationships
• Functionality: 10 use-cases (CRUD excl.)
• User Interface: 34 screens

– Effort: ~800 man-days (~50 analysis, ~550 implementation)

• Generated Claims application
– Volume

• Domain Model: 20 entities, 45 relationships
• Functionality: 15 use-cases (CRUD excl.), 20 business rules
• User Interface: 25 screens

– Effort: ~130 man-days (~80 analysis, ~2 implementation)

• Generated Claims was regenerated on different platform without additional effort

EXAMPLE

5.6.18 Copyright © Alar Raabe 201821

Comparing Model-Driven Method with Traditional

Traditional

Model-Driven

Analysis

Testing

Implementation

EXAMPLE

Benefts are based on
previous investments !

Benefts are based on
previous investments !

5.6.18 Copyright © Alar Raabe 201822

Feature Modeling

• Feature modeling (or feature analysis)
– is the activity of modeling the common and the variable properties

of concepts and their inter-dependencies

• In feature modeling
– Concepts are any elements and structures of the domain of

interest

– Features are qualitative properties of concepts
– Feature model represents the common and variable features of

concept instances and the dependencies between the variable
features

– Feature model consists of a feature diagram and additional
information

Confguration knowledge in
Generative Programming

Confguration knowledge in
Generative Programming

5.6.18 Copyright © Alar Raabe 201823

Feature Diagram

• Tree-like diagram where
– The root node represents a concept, and
– Other nodes represent features

• Feature types
– Mandatory features (f1, f2, f5, f6)
– Optional features (f3, f4)
– Alternative features (f5, f6)

– Or-features (f7, f8, f9)

• Constraints between features
– Composition rules (requires, excludes, …)

C

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
9

f
8

Confguration knowledge in
Generative Programming

Confguration knowledge in
Generative Programming

5.6.18 Copyright © Alar Raabe 201824

Content

• From one system to many

• System Families
– Product-line architectures

• Model-driven development
– Model as Primary Artifact
– Generative Programming
– Feature Modeling

• Conclusions

Any customer can have a
car painted any color that
he wants so long as it is
black

Henry Ford

Any customer can have a
car painted any color that
he wants so long as it is
black

Henry Ford

5.6.18 Copyright © Alar Raabe 201825

Conclusions

• A software product line is a set of
– software systems that share a common, managed set of features and that are developed

from a common set of core assets in a prescribed way
– reusable assets (called core assets) based on a common architecture and the software

elements that populate that architecture

• Selected variation mechanisms must support
– the variations reflected in the products (often manifested as different quality attributes)
– the production strategy and production constraints (support the way the organization plans to

build products)
– efficient integration (a large number of products requires a smooth and easy process) – some

degree of automation

• Primary architectural variation mechanisms are
– Inclusion or omission of elements or inclusion of a different number of replicated elements
– Selection/substitution of different versions of elements with the same interface but different

behavioral or quality attribute characteristics (libraries or addons/plugins)
– Reflection (ability to adjust the behavior based on the context)

The architect must be a prophet – if he can’t see at
least ten years ahead don’t call him an architect.

Frank Lloyd Wright

The architect must be a prophet – if he can’t see at
least ten years ahead don’t call him an architect.

Frank Lloyd Wright

5.6.18 Copyright © Alar Raabe 201826

Thank You!

53. The great way is easy, yet
programmers prefer the side
paths. Be aware when things are
out of balance. Remain centered
within the design.

Lao Tsu (by Philippe Kruchten)

53. The great way is easy, yet
programmers prefer the side
paths. Be aware when things are
out of balance. Remain centered
within the design.

Lao Tsu (by Philippe Kruchten)

5.6.18 Copyright © Alar Raabe 201827

Questions

• What is program family?

• What is a software product-line and
from what it consists of?

• What is a software product-line
architecture?

• What are benefits of a software
product-line?

• What is the role of variation
mechanisms in software product-line
architecture?

• List main variability mechanisms in
product-line architectures?

• How models can be used in software
development?

• What is model-driven software
development?

• What is generative programming?

• What is a domain specific language?

5.6.18 Copyright © Alar Raabe 201828

Literature

• http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

• http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2645&rep=rep1&type=pdf

• http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

• https://pdfs.semanticscholar.org/4d3a/fd1b6cab4ed952137d2499f4468bb5da3670.pdf

•

• http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2645&rep=rep1&type=pdf

•

• https://www.cs.utexas.edu/ftp/predator/stja.pdf

• https://www.janbosch.com/articles/pla-casestudy.pdf

• https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=495357

• https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=11231

•

• … Google “software product line” + “model-driven development” + “feature models” +
“variability management”...

http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2645&rep=rep1&type=pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
https://pdfs.semanticscholar.org/4d3a/fd1b6cab4ed952137d2499f4468bb5da3670.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2645&rep=rep1&type=pdf
https://www.cs.utexas.edu/ftp/predator/stja.pdf
https://www.janbosch.com/articles/pla-casestudy.pdf
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=495357
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=11231

5.6.18 Copyright © Alar Raabe 201829

Service could not correspond
to what customer wanted as
free form agreement
might be misunderstood
by both parties

Work is ineffient and
manual – lot of business
specialists are needed for
producing service

How we did Business Yesterday

Customer

Business
Specialist

Agreement

Service

Reports

Free Form
Agreement

5.6.18 Copyright © Alar Raabe 201831

If customer needs to be
educated for flling the
formalized agreement –
consultants might be
needed

Service corresponds better to
what customer wanted as
formalized agreement is
easier to understand by
both parties

Work is effient and fan
be automated – few if any
business specialists are
needed for producing service

How we do Business Today/Tomorrow

Customer

Business
System

Service

Reports

Consultant

Formalized
Agreement

Request
Model

Business
Specialist

5.6.18 Copyright © Alar Raabe 201832

How we Develop Software Today

Business
Specialist

Specification

Business system could not
correspond to what business
specialist wanted as free
form spefiffation might
be misunderstood by both
parties

Work is ineffient and
manual – lot of software
specialists are needed for
producing business systems

Documentation

Software
Specialist

Business
System

Free Form
Specification

5.6.18 Copyright © Alar Raabe 201833

If business specialist
needs to be educated
for flling the formalized
specifcation – analyst
might be needed

How we should Develop Software

Business
Specialist

Formalized
Specification

Business system
corresponds better to what
business specialist wanted
as formalized spefiffation
is easier to understand
by both parties

Work is effient and fan
be automated – few if any
software specialists are
needed for producing
business systems

Documentation

Software
Generator

Business
System

Problem
Model

Software
Specialist

Analyst

5.6.18 Copyright © Alar Raabe 201834

BusinessObject

attribute3
attribute2
attribute1

method1
method2
method3

Data Tier

Application Tier

Client Tier

Communication Tier

GUI Tier
Visual Components

Non-visual Components

Communication

Server Components

Components

Data Access
Components

Consistency of Implementation

Application Server Client

ViewsModel CacheModel

Service Server

Meta Data

Business Object

Dependent
Object

Independent
Object

ReferenceValue

PROBLEM

5.6.18 Copyright © Alar Raabe 201835

Mapping to Different Implementations

Possible Architecture Styles

Analysis
Model

Filters

Pipes

PROBLEM

5.6.18 Copyright © Alar Raabe 201836

Domain Model → Source for Solution

Executable
Domain Model

Interface Models
(WUI/GUI/RIA)Storage Model

(RDBMS)

External Model
(XML)

Other Domain Models

Mapping 1

Mapping 2

Mapping 4Mapping 3

Domain Model

GeneratorGenerators

Other Domain Models

5.6.18 Copyright © Alar Raabe 201837

OMG MDA Approach

Analysis Model Implementation Model
(Concrete Software)

«transformation»

Problem domain

System requirements

Analysts

knowledge

Solution domain
knowledge

Transformation
Rules

Architect/
Analyst Analysis Model

Analysis Model
Problem Domain

Solution Domain

Architect

OMG MDA CIM

OMG MDA QVT

OMG MDA
PIM

OMG MDA
PSM

Domain Model –
Problem Model

Technology
Neutral Model of

Solution

Model of Solution for
Specifc Technology

5.6.18 Copyright © Alar Raabe 201838

Detailed Steps of
Model-Driven Software Development

Problem Domain

Specific Problem System Model

Solution Domain

Architecture Style
«metamodel»

Problem Domain
«metamodel»

Metamodel

«instanceOf»

Solution Domain
Analysis

Problem Domain
Analysis

Specific Problem
Analysis

Transformation
«metamodel»

Domain Metamodel
Problem to Solution

Mapping Design

Synthesis Rules

«instanceOf»

«subset»

Architecture Model

«instanceOf»

Generic Solution
Design

Synthesis of
Specific System

Implementation
of Architecture

«instanceOf»

Architecture
Components

Specific System
Implementation

«uses»

Reference Model

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Feature modelling
	Feature diagram
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

