
Software (Systems)
Architecture Foundations

Supplementary Material

Alar Raabe

17.5.18 Copyright © Alar Raabe 20182

Content

• Interfaces
– Interface as Concept
– Interfaces in Module Structures
– Interfaces in Component-and-Connector Structures
– Principles about Interfaces and the Nature of Interfaces

• Micro-Services vs. Enterprise Service Bus

• Scaling Micro-Services vs. Scaling Monoliths

17.5.18 Copyright © Alar Raabe 20183

Interface is ...

• An interface is a boundary across which two elements meet and interact or
communicate with each other (CMU SEI)

• Interface is an interconnection and inter-relationships between, for example,
people, systems, devices, applications, or the user and an application or device
(TOGAF)

• Interface is an external active structure element, that represents a point of
access where one or more services are provided to the environment (ArchiMate)

• IEEE
– Interface is a hardware or software component that connects two or more other

components for the purpose of passing information from one to the other
– Interface is an abstraction of the behavior of an object that consists of a subset of

the interactions of that object together with a set of constraints on when they can occur

Interface is the Boundary of InteractionInterface is the Boundary of Interaction

17.5.18 Copyright © Alar Raabe 20184

Interface – as a Boundary where two Systems meet

System A System B

In
te

rf
ac

e

Content – what data flows
through the Interface (entities,
attributes, values, …) ?

Protocol – what is the order and
nature of actions taking place at
the interface (synchronous
conversation, asynchronous
conversation, …) ?

Quality of Data – what are
requirements on data that flows
through the Interface (consistency,
completeness, …) ?

Quality of Service – what are the
requirements to the actions taking
place at the interface (timing,
security, …) ?

17.5.18 Copyright © Alar Raabe 20185

Architecture Structures and Interface (CMU SEI)

• Module structures – embody decisions as to how the system is to be structured as a set of code or
data units that have to be constructed or procured

Module Interface defines what is available (visible) to other Modules

• Component-and-connector structures – embody decisions as to how the system is to be structured
as a set of elements that have run-time behavior (components) and interactions (connectors)

Component Interface is called Port and it defines the potential interactions (behavior) of Component
with its environment

Connector Interface is called Role and it defines the ways how Connector can be used (specifying
protocol of interaction – i.e. prescribing what patterns of events or actions are allowed to take place
over the Connector)

Attachments can be made only between compatible Ports and Roles – Components can be attached
only to Connectors, not to other Components an vice versa

In case of Interface delegation Component ports can be associated with one or more Ports in an
“internal” structure (similarly for the roles of a connector)

All elements of Architecture have InterfacesAll elements of Architecture have Interfaces

17.5.18 Copyright © Alar Raabe 20186

Module Interface → External Definition of Module
(Signature & Invariants)

Module

Interface

Interface is the set of assumptions that
each programmer needs to make about the
other program in order to demonstrate the
correctness of his own program

D. L. Parnas

Interface is the set of assumptions that
each programmer needs to make about the
other program in order to demonstrate the
correctness of his own program

D. L. Parnas

Things that must be hidden from the other
developers

(NB! Open source is considered harmful!)

Only these things about the Module that
can be visible to the other developers

17.5.18 Copyright © Alar Raabe 20187

Module Interface → External Definition of Module

Used Module

Interface

Using Module
Interface is the Shared Resource – a
Contract between the Using Module
and Used Module

Change of Interface can break the
Contract !

Module can’t have several
Interfaces of same type

Module can’t have several
Interfaces of same type

17.5.18 Copyright © Alar Raabe 20188

Component Interface and Connector Interfaces →
Possible Behavior / Interactions & Data

Component

A
Connector

P
or

t
(I

n
te

rf
ac

e)

R
ol

e
(I

nt
e

rf
ac

e
)

Component

B

P
or

t
(I

n
te

rf
ac

e)

R
ol

e
(I

nt
e

rf
ac

e
)

Components and Connectors
can have several Interfaces
of same type

Components and Connectors
can have several Interfaces
of same type

17.5.18 Copyright © Alar Raabe 20189

Some Principles about Interfaces

• All elements have interfaces – all software elements interact with their environment

• An element’s interface is separate from its implementation

• An element can have multiple interfaces
– Each interface contains a separate collection of resources (functions, data, message end points, event triggers, ...)

that have a related logical purpose, or represent a role that the element could fulfill
– Multiple interfaces provide a separation of concerns – a specific actor might require only a subset of the resources
– Evolution can be supported by keeping the old interface and adding a new one

• Elements not only provide interfaces but also require interfaces
– An element interacts with its environment by making use of resources or assuming that its environment behaves in

a certain way – without these required resources, the element cannot function correctly

• Multiple actors may interact with an element through its interface at the same time (if interface allows
multiple concurrent interactions)

• Interfaces can be extended by generalization
– Examples of resources often shared by several interfaces include: an initialization operation, a set of exceptions, …

• Sometimes it’s useful to distinguish interface types from interface instances in the architecture (if
components can provide multiple instances of the same interface)

CMU SEI Views & BeyondCMU SEI Views & Beyond

17.5.18 Copyright © Alar Raabe 201810

Nature of Interface

• Nature of Usage
– Provided Interface (the services offered to others) vs.

Required Interface (services needed from others)

• Nature of Interactions
– Synchronous (requester waits until result is delivered) vs.

Asynchronous (requester doesn’t wait the result)
– Transactional Protocol (stateless) vs. Conversational Protocol (stateful)

• Nature of Behavior
– Fine-Grained (small actions) vs. Coarse Grained (large actions)

• Nature of Actor
– User Interface (Human Interface) vs. Programming Interface (API)

• Nature of Operation(s)
– REST API (requesting a resource representation) vs RPC API (requesting a service)

Asynchronous ≠ Event-DrivenAsynchronous ≠ Event-Driven

17.5.18 Copyright © Alar Raabe 201811

Content

• Interfaces
– Interface as Concept
– Interfaces in Module Structures
– Interfaces in Component-and-Connector Structures
– Principles about Interfaces and the Nature of Interfaces

• Micro-Services vs. Enterprise Service Bus

• Scaling Micro-Services vs. Scaling Monoliths

17.5.18 Copyright © Alar Raabe 201812

Micro-Services vs. Enterprise Service Bus

Micro-Services → One Application
ESB → Many Applications

Micro-Services → One Application
ESB → Many Applications

• Micro-Services
– For modularization of applications into

loosely coupled components
– No centralized service management
– Focuses on decoupling (decomposition of

application)
– No centralized communication

infrastructure (better error tolerance)
– Usually single simple communication

protocol
– Limits integration choices
– Usually smaller granularity of components
– Multiple independent data-stores
– Relaxed governance

– Better suited for compact and well-
partitioned applications

• Enterprise Service Bus (SOA)
– For composition of application from

independent components
– Centralized service management
– Focuses on reuse (of business

functionality)
– Usually centralized communication

infrastructure (single point of failure)
– Supports multiple communication

protocols
– Focuses on interoperability
– Usually larger granularity of components
– Usually share data-store
– Common governance

– Better suited for large complex
enterprise applications (sets of
applications)

17.5.18 Copyright © Alar Raabe 201813

Content

• Interfaces
– Interface as Concept
– Interfaces in Module Structures
– Interfaces in Component-and-Connector Structures
– Principles about Interfaces and the Nature of Interfaces

• Micro-Services vs. Enterprise Service Bus

• Scaling Micro-Services vs. Scaling Monoliths

17.5.18 Copyright © Alar Raabe 201814

Scaling Micro-Services
→ fine control

High Load

High Load

17.5.18 Copyright © Alar Raabe 201815

Scaling the Monolith (“cookie cutter” scaling)
→ simpler to manage

If you can’t build a monolith, what
makes you think micro-services are
the answer?

S. Brown

If you can’t build a monolith, what
makes you think micro-services are
the answer?

S. Brown

17.5.18 Copyright © Alar Raabe 201816

Thank You!

38’. When the process is lost, there is good practice
When good practice is lost, there are rules
When rules are lost, there is ritual
Ritual is the beginning of chaos

Lao Tsu (by Philippe Kruchten)

38’. When the process is lost, there is good practice
When good practice is lost, there are rules
When rules are lost, there is ritual
Ritual is the beginning of chaos

Lao Tsu (by Philippe Kruchten)

17.5.18 Copyright © Alar Raabe 201817

Literature

•

• https://flylib.com/books/en/2.121.1/
– https://flylib.com/books/en/2.121.1/3366_overview.html

• http://blog.robertelder.org/interfaces-most-important-software-engineering-c
oncept/

• http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

• http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_
mud.html

• https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa

• ...

•

• … Google ...

https://flylib.com/books/en/2.121.1/
https://flylib.com/books/en/2.121.1/3366_overview.html
http://blog.robertelder.org/interfaces-most-important-software-engineering-concept/
http://blog.robertelder.org/interfaces-most-important-software-engineering-concept/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html
http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html
https://martinfowler.com/articles/microservices.html#MicroservicesAndSoa

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

